
Topological order in
condensed matter physics





Topological order in
condensed matter physics

Academisch Proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr. D.C. van den Boom
ten overstaan van een door het college voor promoties

ingestelde
commissie, in het openbaar te verdedigen in de Agnietenkapel

door

Jesper Christian Romers
geboren te Delft.



Promotores: Prof. dr. C.J.M. Schoutens
Prof. dr. ir. F.A. Bais

Overige Leden: Prof. dr. J.-S. Caux
Prof. dr. S.H. Simon
Prof. dr. E.P. Verlinde
Dr. B.D.A. Estienne
Dr. V. Vitelli
Dr. A.M. Turner

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

This work is part of the research program of the “Stichting voor Fundamenteel
Onderzoek der Materie (FOM)", which is financially supported by the “Ned-
erlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)"

Copyright c© 2012 by J.C. Romers
This work is licensed under the Creative Commons Attribution 3.0 NL licence.
Cover design by Wendely Wesselink c© 2012
Typeset by LATEX. Printed and bound by

http://creativecommons.org/licenses/by/3.0/nl/deed.en_GB


Contents

1 Preface 7
1.1 Circles and winding numbers . . . . . . . . . . . . . . . . . . . . 8
1.2 Topological excitations . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Topological insulators . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Topological quantum field theory . . . . . . . . . . . . . . . . . . 15
1.5 Anyons and TQC . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 TQFTs in 2D 19
2.1 The Aharonov-Bohm effect . . . . . . . . . . . . . . . . . . . . . 19
2.2 Anyons in 2D TQFTs . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Fusion, braiding, spin and all that . . . . . . . . . . . . . 22
2.2.2 The S-matrix and the Verlinde formula . . . . . . . . . . 23

2.3 Topological symmetry breaking . . . . . . . . . . . . . . . . . . . 26
2.3.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 Example: breaking SU(2)4 to SU(3)1 . . . . . . . . . . . 29

2.4 Observables and diagrammatics . . . . . . . . . . . . . . . . . . 30
2.4.1 Condensate and the embedding index q . . . . . . . . . 32
2.4.2 The broken modular S- and T-matrices . . . . . . . . . . 32

3



4 CONTENTS

3 Discrete Gauge Theories 35
3.1 Kitaev’s Toric Code and the Z2 gauge theory . . . . . . . . . . . 36

3.1.1 Euclidean formalism . . . . . . . . . . . . . . . . . . . . . 38
3.1.2 Phase structure . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Quantum Double and Discrete Gauge Theories . . . . . . . . . 41
3.2.1 Electric and magnetic symmetries . . . . . . . . . . . . . 41
3.2.2 Realizing a discrete gauge theory . . . . . . . . . . . . . 42
3.2.3 Unified framework: quantum double . . . . . . . . . . . 46

3.3 Euclidean approach to DGTs . . . . . . . . . . . . . . . . . . . . 53
3.3.1 Lattice actions and observables . . . . . . . . . . . . . . . 53
3.3.2 Order parameters and phase indicators . . . . . . . . . 56

3.4 D(D2) theory: algebraic analysis . . . . . . . . . . . . . . . . . . 65
3.4.1 Breaking: (e, 1) condensate . . . . . . . . . . . . . . . . . 66
3.4.2 Breaking: (X1, Γ0) condensate . . . . . . . . . . . . . . . 69

3.5 D(D2) theory: lattice analysis . . . . . . . . . . . . . . . . . . . . 70
3.5.1 Monte Carlo considerations . . . . . . . . . . . . . . . . . 70
3.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.7 Fusion rules for D(D2) DGT . . . . . . . . . . . . . . . . . . . . 88

4 The quantum Hall effect and spin textures 89
4.1 Quantum Hall physics . . . . . . . . . . . . . . . . . . . . . . . . 89

4.1.1 Integer quantum Hall effect . . . . . . . . . . . . . . . . . 89
4.1.2 Fractional quantum Hall effect and the CFT connection 91
4.1.3 Paired quantum Hall states and the colorful construction 93

4.2 Charged Spin Textures in quantum Hall systems . . . . . . . . . 98
4.2.1 Skyrmions in the integer quantum Hall effect . . . . . . 98
4.2.2 Construction of CST wave functions over the MR state . 101
4.2.3 Properties of CSTs over the MR state . . . . . . . . . . . 108

4.3 Spin texture read out of a qubit . . . . . . . . . . . . . . . . . . . 112
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5 Conclusions and outlook 121



CONTENTS 5

Mystische Erklärungen. — Die mystischen Erklärungen gelten für tief; die
Wahrheit ist, dass sie noch nicht einmal oberflächlich sind.

Friedrich W. Nietzsche

Die fröhliche Wissenschaft [1]
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CHAPTER 1

Preface

I call our world Flatland, not because we call it so, but to make its nature
clearer to you, my happy readers, who are privileged to live in Space.

Edwin A. Abbott

Flatland [2]

The thesis in front of you is the result of four years of research in theoreti-
cal physics. The original research on which it is based is centred around two
topics in condensed matter theory — a lattice model for discrete gauge theo-
ries and spin textures in quantum Hall states — that are superficially rather
different. This introductory chapter serves as a guide on how to localize these
topics in the field of modern condensed matter theory and hopefully it will
convince you, the reader, that their common denominator justifies both their
presence in this work.

The key concept here is topological order. These words characterize a fam-
ily of novel states of matter, starting with the quantum Hall state. A quick
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8 CHAPTER 1. PREFACE

analysis at the time of writing [3] reveals that the use of the word “topolog-
ical” in all the articles placed in the cond-mat subject class at arXiv.org has
increased fourfold over the last ten years (from roughly 50 times per million
words at the start of 2002 to about 200 times per million words in 2012). This
branch of mathematics has worked its way through nearly all disciplines of
physics, touching upon subjects such as the Aharonov-Bohm effect [4], mag-
netic monopoles [5, 6], topological quantum field theory [7], the quantum
Hall effect [8] and more recently the discovery of a periodic table, the “Table
of Ten" [9, 10] — based on abstract mathematical work on the classification of
symmetric spaces by Cartan [11, 12] in the 1920’s — of topological insulators
and superconductors.

1.1 Circles and winding numbers

To make more explicit what we are talking about when we discuss topology
in physics, let us first define the notion of topological equivalence in a very
pedestrian fashion:

Two objects are topologically equivalent if one can continuously deform one into the
other without cutting and pasting.

This immediately captures the essence of the best-known example of topolog-
ical equivalence, namely the one between a doughnut and a coffee cup. One
can imagine continuously deforming one into the other without punching an
extra hole or glueing parts together and creating a new hole.

The kind of topological equivalence suitable for our purposes is often one
between maps. These maps could be between physical space or spacetime and
some internal space (leading to solitons and instantons respectively), the Bril-
louin zone and the space of gapped free fermion Hamiltonians (resulting in
the celebrated “Table of Ten” for topological insulators and superconductors)
et cetera, but for the moment we restrict ourselves to the simplest of examples:
the set of maps between circles and circles.

Consider a circle S1 parametrized by an angle θ ∈ [0, 2π). We can define a
smooth map φ

φ : S1 → S1, (1.1)

θ ∈ [0, 2π) 7→ φ(θ) ∈ [0, 2π),



1.1. CIRCLES AND WINDING NUMBERS 9
76 S.M. Girvin

θ

n=+1

n=0

n=+2

ϕ θ

ϕ θ

ϕ

Figure 1.28: A different representation of the mappings from θ to ϕ. The
dashed line represents the domain θ and the solid line represents the range ϕ.
The domain is ‘lifted up’ by the mapping and placed on the range. The winding
number n is the number of times the dashed circle wraps the solid circle (with
a possible minus sign depending on the orientation).

Figure 1.1: Different maps from the circle parametrized by θ to the circle
parametrized by φ. The winding number n counts how many times the map
winds around the range as the domain is traversed once. Figure from Ref. [13].

from this circle to another circle. These maps are characterized by an integer
called the winding number, see Figure 1.1. This counts how many times φ
wraps around the circle as θ runs from 0 to 2π. This is clearly a topological
property, since no smooth deformation can change this number. The fact that
maps between manifolds fall into topologically distinct classes lies at the root
of all that follows below. Maps such as (1.1) can naturally be concatenated to
form new map

φ3 = φ1 ? φ2 : S1 → S1, (1.2)

θ 7→
{

φ1(2θ) if θ ∈ [0, π)
φ2(2θ − 2π) if θ ∈ [π, 2π)

,

such that the winding number of map φ3 is the sum of winding numbers
of φ1 and φ2. This endows the equivalence classes of maps from circles to
circles with a group structure. An obvious generalization of this structure is
the study of equivalence classes of maps from d-dimensional spheres to some
manifold M. The term for this set of equivalence classes is the d-th homotopy



10 CHAPTER 1. PREFACE

group of M, πd(M).
It is straightforward to see that the winding numbers of the maps in Eq.

(1.2) add up, therefore π1(S1) = Z. For higher dimensional manifolds and
more complex target spaces the problem becomes highly nontrivial, but luck-
ily many cases of interest have been worked out in the mathematical literature.

1.2 Topological excitations

Spin models A classical model for a ferromagnet in two dimensions is the
O(3) sigma model, basically the continuum limit of the Heisenberg ferromag-
net. Its action in the absence of external fields is given by

S =
1
g

∫
d3x ∂µn · ∂µn, (1.3)

where n(x) is a real three-dimensional vector field subject to the constraint

n(x) · n(x) = 1, for all x,

which means this vector takes values on the surface of a two-sphere S2; the
action (1.3) also respects the symmetries of the sphere — in other words it is
invariant under global O(3) rotations, hence the name of the theory.

The ground state of this model is a ferromagnetic state, with all the vectors
pointing in the same direction

n(x) = n0 for all x, (1.4)

since in this field configuration all the derivatives evaluate to zero. Such a state
breaks the global O(3) symmetry so one expects to find Goldstone bosons; in
this case they are spin wave excitations.

In addition to these gapless excitations, the system described by Eq. (1.3)
also carries gapped particle-like excitations in its spectrum. These are associ-
ated with classical field configurations that cannot be continuously deformed
to the polarized ground state (1.4) and are thus topologically distinct from
them.

We established that the field takes values on the surface of a two-sphere.
If we compactify two-dimensional real space M to a two-sphere — by identi-
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fying all points at infinity — the map defined by n

n : S2 → S2,

x 7→ n(x),

can be classified by an integer, since π2(S2) = Z. This number is referred
to as the Pontryagin index or topological charge and a field configuration
carrying one unit of this charge is a skyrmion [14]. A remarkable aspect of
topological charge is that although it is a very non-local quantity, invariant
under local deformations, it can be expressed as an integral of a local quantity,
the Pontryagin density ρtop

ρtop =
1

4π
n · ∂xn× ∂yn.

In Chapter 4 we find generalizations of skyrmions which we call Charged
Spin Textures (since they also carry electric charge) that are in a sense half-
skyrmions.

Gauge theories Let us consider a Yang-Mills theory with compact gauge
group G and a Higgs field φ which breaks the symmetry spontaneously due
to its potential V(φ)

S =
∫

ddx
{
−1

4
Fa

µνFaµν − 1
2

DµφDµφ−V(φ)

}
. (1.5)

We will study the possibility of topologically nontrivial solutions in a Eu-
clidean spacetime M = Rd. To obtain a solution with finite action, we demand
the terms of equation (1.5) to vanish separately at infinity. For the Higgs field
this means that

∂V
∂φ

∣∣
x∈∂M = 0.

Say we have a particular solution φ0 that minimizes the potential. Then, be-
cause of the symmetry in (1.5), any φ = gφ0 is a minimum of V for all ele-
ments g ∈ G. Now suppose the symmetry is not completely broken, because
the field φ does not transform under a faithful representation of G. Then there
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exists a residual symmetry group H, given by the stabilizer of φ0,

H = {h
∣∣h ∈ G, hφ0 = φ0}

which allows us to split each element in G into a group product of an element
in the coset G/H and an element in H

g = kh, h ∈ H, k ∈ G/H.

The manifold of vacua is therefore not the full group V, but the coset space
G/H

gφ0 = kφ0 ' G/H,

and since φ need not be a constant function at the boundary of spacetime ∂M

φ (∂M) = k (∂M) φ0.

We can construct a map from the boundary of space to the vacuum manifold

k (∂M) : ∂M→ G/H.

The boundary of the spacetime manifold in d dimensions can be thought of as
a hypersphere Sd−1

X , where the X has been added to emphasize this concerns
spacetime, as opposed to group space. The maps k in equation (1.6) fall into
different topological classes that cannot be continuously deformed in one an-
other. They are therefore labeled by the elements of the homotopy group of
the vacuum manifold of order (d− 1), πd−1(G/H).

This observation tells us what possible pointlike topological defects are
possible in the theory. For example, in R4 the boundary of spacetime is topo-
logically equivalent to the three-sphere S3. From homotopy theory it is known
that π3(S3) = Z. This means that the instantons [15], as the pointlike topo-
logically nontrivial solutions are called, are here labeled by an integer.

To classify higher dimensional objects, we need to consider different ho-
motopy groups than the previously given πd−1. If d is the dimension of
spacetime, and D is the dimension of the topological defect in spacetime,
the relevant homotopy group becomes πd−D−1(G/H). In this discussion we
consistently use a spacetime point of view, so for example in R4 an instanton
is a point, a monopole is linelike since it moves through space and time and
a fluxtube sweeps out an area in spacetime - thus being a two-dimensional
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object. Some of the more common topological excitations in gauge theories
are collected in Table 1.1.

d D Homotopy group Name
3 0 π2(G/H) Instanton
3 1 π1(G/H) Fluxtube
4 0 π3(G/H) Instanton
4 1 π2(G/H) Monopole
4 2 π1(G/H) Fluxtube

Table 1.1: Names and relevant homotopy groups for some topological excita-
tions in gauge theories. The dimensionality of spacetime is d, the dimension-
ality of the defect in spacetime is D and the vacuum manifold is G/H.

One has to be very careful as how to physically interpret these objects.
The zero-dimensional defects in any spacetime dimensionality are instantons;
they are localized in both space and time. Therefore they are often interpreted
as tunneling events between degenerate vacua and turn out to have drastic
effects [16] when fermions are included in the theory — the appearance of
fermionic zero modes.

In Chapter 3 we study discrete gauge theories in 2+1 dimensions. These
theories contain a particular type of soliton, namely a magnetic fluxes. What
makes them special is the fact that their topological charge can be an element
of a non-Abelian group, which leads to the phenomenon of flux metamorpho-
sis [17] and non-Abelian anyons.

1.3 Topological insulators

So far we have seen examples of topology arise in mappings between coordi-
nate space(time) and field configurations, leading to solitons and instantons.
A more recent discovery was the appearance of topologically non-trivial maps
in perhaps the most elementary of all states of matter, the band insulator
[9, 10].

In a band insulator, the energy spectrum has a gap separating the occupied
and empty bands. Assuming that the topological properties of the system are
invariant under smooth deformations of the band structure that keep the gap
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open, the Hamiltonian of any band insulator can be cast in a simplified form,
often denoted by Q, in which all occupied (unoccupied) states have energy -1
(+1):

Q(k) = 1− 2 ∑
a∈occ

|ua(k)〉〈ua(k)|, (1.6)

where we denote the Bloch states by |ua(k)〉. Say there are n unoccupied
bands and m occupied ones; since a reshuffling of either the occupied bands
or the unoccupied bands leaves the operator (1.6) invariant,

Q(k) ∈ U(n + m)

U(n)×U(m)
' Gm,m+n(C), (1.7)

the latter symbol meaning a complex Grassmannian manifold, having the
property Gm,m+n ' Gn,m+n(C).

The operator Q is thus a map from the d-dimensional Brillouin zone (which
is a d-dimensional torus Td) to a Grassmannian

Q : Td → Gm,m+n,

k 7→ Q(k),

which can have non-trivial winding numbers depending on the dimensional-
ity of space. Now we make a further simplification: we will compactify the
toroidal topology of the Brillouin zone to a sphere. The topological invari-
ants arising from maps from this sphere to the Grassmannian are called strong
topological invariants in the literature, whereas the extra topological invariants
arising from the fact the torus has an extra number of non-contractible loops
compared to the sphere are called weak topological invariants. Most attention
in the literature has been given to the former, and this reduces the problem to
studying the homotopy groups of Grassmannian manifolds.

It turns out that [10]

πd(Gm,m+n) = 0 for d odd,

πd(Gm,m+n) = Z for d even.

In the absence of further symmetries in the Hamiltonian, the story ends
here. The above equation physically means that in even dimensional spaces
there exist states of non-interacting fermionic band insulators that are topolog-



1.4. TOPOLOGICAL QUANTUM FIELD THEORY 15

ically distinct from the atomic insulator — in d = 2, this is the integer quan-
tum Hall effect. However, if the system has time-reversal symmetry (TRS),
particle-hole symmetry (PHS) or chiral symmetry (CS), further conditions can
be imposed on the target Grassmannian in Eq. (1.7). These conditions make
that the homotopy properties of the map (1.8) change and different types of
topologically non-trivial states of matter might appear: all in all there turn out
to be ten different classes of them, their periodic table is often referred to as
the “Table of Ten".

Although the work in this thesis only touches upon one of these systems,
the integer quantum Hall effect, in the introduction of Chapter 4, this classi-
fication has proven to be so fundamental to our understanding of topological
states of matter that it deserves to be in any overview of the field.

1.4 Topological quantum field theory

Although we dedicate the entire next chapter to the subject of topological
quantum field theory (TQFT), here might be the right place to introduce them
on a somewhat more conceptual level. A possible definition is that a TQFT is
a quantum field theory that does not feature the metric on the spacetime on
which it is defined in its formulation; therefore all physical observables are
independent of continuous deformations of that spacetime. Practically1 this
means that the only interactions in such a theory are topological in nature:
basically generalizations of the interactions that take place between the elec-
trically charged particle and the magnetic flux in the Aharonov-Bohm effect.

Let us restrict ourselves to 2+1 dimensions since it is an interesting case
and also the situation exclusively encountered in the research presented in
this thesis. Operators that create particle-antiparticle pairs, propagate them
through time and annihilate them are loops embedded in the three-dimensional
spacetime2. Topologically speaking therefore these operators are embeddings
of circles into R3, which is exactly the subject of the mathematical discipline
of knot theory. Indeed it was shown by Witten in Ref. [7] that a mathemat-
ical invariant of knots — the Jones polynomial — can be expressed as the
expectation value of a Wilson loop in a Chern-Simons theory, an example of a

1The word “practically" is used here in one of its loosest definitions.
2Strictly speaking, they are loops with a framing, since particles can have nontrivial spin. It is

therefore maybe more illuminating to think of these loops as ribbons.
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TQFT.
An important point of TQFTs that will not be touched upon in the remain-

der of this thesis is the appearance of edge modes in these systems. When
a TQFT is formulated on a manifold with a boundary, the bulk will remain
gapped but often the edge will be described by a Conformal Field Theory
(CFT) For Chern-Simons theories this leads to a beautiful duality between the
edge and the bulk: the CFT describing the gapless edge modes is the same
as the CFT whose conformal blocks span the Hilbert space of the bulk wave
function in the presence of external charges. Each particle sector in the bulk
has a corresponding particle sector on the edge, which is the rationale behind
quantum Hall interference experiments, where quasiparticles run along the
edges of a Hall bar and tunnel through the bulk Hall medium.

In Chapter 3 we study a different TQFT, a gauge theory with a finite dis-
crete gauge group: a Discrete Gauge Theory (DGT). We show that the mea-
surement of a topological object, namely a Hopf link of two loops, allows one
to find the modular S-matrix of the theory. This matrix, together with the
topological spins of the different particle sectors allows one to recover the fu-
sion rules of the theory and is therefore of central importance to the study of
TQFTs. In a sense, it is an order parameter for TQFTs, since we also show
that this object can be measured in vacua of broken symmetry, where it can
be used to reconstruct the (S-matrix of the) effective low-energy TQFT.

1.5 Anyons and TQC

Three-dimensional spacetime — the Flatland mentioned in the quote at the
beginning of this chapter — is unique in the sense that particle statistics there
is not restricted to being either bosonic or fermionic. The worldline of a point
particle going around another point particle in spacetimes of dimension larger
than three can always be contracted to a point. Since taking one particle “full
circle" around another one is equivalent to interchanging them twice, this
operation cannot have any action on the multiparticle wave function in these
higher-dimensional spacetimes. The effect of doing half of this operation (a
single interchange or braiding) can therefore only be a multiplication by ±1,
where the plus sign is for bosons and the minus sign for fermions.

In 2+1 dimensions, such worldlines are not contractible, and can therefore
leave the wave function with an arbitrary phase factor. A single interchange
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will result in half this phase, and since this phase can in principle have any
value, particles having this property have been dubbed anyons [18, 19]. This
argument only tells us that anyons could exist in 2+1 dimensions, of course
not that they should: there are many theories in 2+1d that contain only bosons
and/or fermions. However, the TQFTs mentioned thusfar — DGTs and Chern-
Simons theories — support stable anyons in their spectrum.

The situation can become even more exotic. The Moore-Read fractional
quantum Hall (fqH) state, a system studied in Chapter 4, is a physical system
in which the interactions between the quasihole excitations are strictly topo-
logical as long as they are well separated. If one carries out the computation,
one finds that the state of the system with four quasiholes pinned at fixed
locations is doubly degenerate. An interchange of two quasiholes in this four-
particle state turns out not to give only a phase on the wave function, but acts
as a unitary matrix on the two dimensional space of states. Since matrices
need not commute, these anyons were called “non-Abelian".

This discovery led to the idea of topological quantum computation (TQC)
[20]: the two degenerate states could be used as a qubit. The information in
this qubit is protected from the environment since the only way by which one
can go from one state vector to the other is by the very non-local operation
of braiding. Perturbations from the environment are always local in nature
and tunneling between the basis states of the qubit is therefore exponentially
surpressed in the system size. The computational operations on qubits in
this scheme are realized by different braidings and the readout of the register
would be performed by fusing the excitations together. In Section 4.3 we
propose a scheme for the readout of a Moore-Read fqH quantum register
that could work if the elementary quasiholes carry spin textures as has been
conjectured in Ref. [21].

So far, the only system in Nature that is conjectured to carry non-Abelian
anyons as its excitations is the fqH state at filling ν = 5

2 . If its physics is
indeed shown to be adequately captured by the Moore-Read state this is a
leap forward for condensed matter physics. However, the experiments to
demonstrate the non-Abelian statistics have proven to be notoriously difficult.
Recent experiments [22] look promising, but the smoking gun is still lacking.
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CHAPTER 2

Topological quantum field theories in 2D

In this chapter we discuss the properties of topological quantum field theories
(TQFTs) in two spatial dimensions. We do not yet care about any particular
microscopic model having a TQFT as an effective field theory describing one
of its phases. Moreover, for the moment we also ignore the precise form of the
Hamiltonian or Lagrangian describing the effective field theory. Our starting
point is the fact that these theories have (possibly non-Abelian) anyons as their
quasiparticle excitations which are gapped and that interact with one another
solely through generalized Aharonov-Bohm (A-B) effects.

This chapter contains no original research by the author, but serves as an
introduction to the subject matter and to establish the formalism that will be
used later in this thesis.

2.1 The Aharonov-Bohm effect

To obtain some physical intuition on TQFTs, let us connect them with a the-
ory that is perhaps more familiar, namely quantum electrodynamics (QED).
In the following we discuss the Aharonov-Bohm effect [4], the archetypical

19



20 CHAPTER 2. TQFTS IN 2D

topological interaction. QED possesses these A-B interactions in addition to
its interactions that are mediated by local degrees of freedom (e.g. photons).
A TQFT is a theory in which all local degrees of freedom are absent and only
such generalized A-B effects persist.

Quantum electrodynamics is the simplest case of a Yang-Mills theory,
where the gauge group is Abelian, namely U(1). Imposing a local symme-
try on the Dirac action requires the introduction of a new field, the Aµ gauge
field. This field acts as a potential for the electric and magnetic fields. How-
ever, the E and B fields are not affected by a gauge transformation, whereas
the Aµ field, by its very nature, transforms. It is therefore common usage
to refer to the latter as an unphysical field, whereas the former describe the
local physical degrees of freedom. After fixing the gauge to only allow time-
independent transformations,

Aµ = (φ, A) ,

E = ∇φ,

B = ∇× A.

That this is not a complete picture can be understood by the following gedanken-
experiment. Put a very long solenoid somewhere in space, for example along
the z-axis. This will create some magnetic field inside the solenoid, but out-
side of it, there are no physical fields. Inside the solenoid therefore

E = 0,

B = Bz,

A =

(
−By

2
,

Bx
2

, 0
)

,

where we use z for a unit vector in the z-direction, B for the magnitude of the
magnetic field and x, y and z for ordinary Cartesian coordinates. Outside the
solenoid, the following situation is realized:

E = 0,

B = 0,

A =

(
−BR2y

2r2 ,
BR2x
2r2 , 0

)
,
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in which R is the radius of the solenoid and r is the distance from the center
of the solenoid.

Now consider an interference experiment with two electrons and the solenoid.
One part of the electron wavefunction will travel underneath the solenoid and
the other part will go over it. The two parts will interfere with a phase differ-
ence that is observable.

The phase acquired by an electron moving in the background of a gauge
field can be determined by minimal substitution, or — more geometrically —
by interpreting the gauge field as a connection. We will do the latter, and find
for the phase θ acquired after parallel transport along a path C

θ(C) =
−e
h̄

∫

C
A · dr.

The phase difference between the two paths is then, using Stokes’ theorem:

∆θ = θ(C1)− θ(C2) =
∫

C1∪−C2

A · dr

=
e
h̄

∮

C1∪−C2

A · dr

=
e
h̄

∫

S
∇× A · ds

=
e
h̄

∫

S
B · ds =

e
h̄

Φ,

where C1 ∪ −C2 denotes the path obtained by first traversing C1, and then
C2 in opposite direction. S is the surface spanned by this curve and Φ the
total magnetic flux piercing S, which in this situation is of course equal to the
magnetic flux created by the solenoid.

Thus: the electrons pass only through parts of space where the electric
and magnetic fields are zero, but there is a physically observable effect. This
effect only depends on the number of turns taken around the flux, i.e. it is a
function of the topology of the path. It is therefore the prototype of a nonlocal
topological interaction.
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2.2 Anyons in 2D TQFTs

In this section we set the stage and fix the notation for much of the rest of
this thesis. We study phases of systems that are described by a TQFT in 2 + 1
dimensions, that is systems that only interact through generalized Aharonov-
Bohm interactions. We label the different sectors or (anyonic) particle species
by a, b, c, . . . . The two interactions between two particles in a TQFT are fusion
and braiding.

2.2.1 Fusion, braiding, spin and all that

Fusion We describe fusion by the rule

a× b = ∑
c

Nab
c c, (2.1)

where the integer multiplicities Nab
c give the number of times c appears in the

fusion product of a and b. The fusion algebra is associative and commutative,
and has a unique identity element denoted as “1" that represents the vacuum.
Each sector a has a unique conjugate ā (representing the corresponding anti
anyon) with the property that their fusion product contains the identity:

a× a = 1 + ∑
c 6=1

Naa
c c.

Braiding The particles in a 2 + 1 dimensional TQFT can have fractional spin
and statistics. Rotating a particle a by 2π (also called twisting) multiplies the
state vector by a phase equal to the spin factor θa

|a〉 twist→ θa|a〉,

generalizing the usual +1 (−1) known from bosons (fermions) in 3+ 1 dimen-
sions. Adiabatically moving a particle a around another particle b in a channel
c is called a braiding and can have a nontrivial effect on the state vector of the
system, given by θc/θaθb.

Quantum dimensions The quantum dimensions da of particle species a are
another set of important quantities in a TQFT. These numbers satisfy the fu-



2.2. ANYONS IN 2D TQFTS 23

sion rules (2.1), i.e. dadb = ∑c Nab
c dc. The quantum dimension of an anyonic

species is a measure for the effective number of degrees of freedom, corre-
sponding to the internal Hilbert space of the corresponding particle type. The
Hilbert space dimension of a system with N identical particles of type a grows
as (da)N for N large. In general, the quantum dimensions da will be real num-
bers; however for DGTs they are integers. The total quantum dimension D of
the theory is given by

D =
√

∑
i

d2
a,

and the topological entanglement entropy of the ground state [23, 24] is pro-
portional to logD.

2.2.2 The S-matrix and the Verlinde formula

The modular group Instead of the fusion coefficients Nab
c an alternative

specification of a (modular) topological field theory is by its representation
of the modular group SL(2, Z) generated by the S and T-matrices

S2 = (ST)3 = C, S∗ = CS = S−1, T∗ = T−1, C2 = 1, (2.2)

with C the charge conjugation matrix. The corresponding matrix elements can
be expressed in the fusion coefficients and spin factors:

Sab =
1
D ∑

c
Nab

c
θc

θaθb
dc, (2.3)

Tab = e−2πi(c/24)θaδa,b (2.4)

where D is the total quantum dimension and the constant c is the conformal
central charge of the corresponding conformal field theory. The central charge
of a discrete gauge theory is zero, so in that case the T-matrix is just the
diagonal matrix containing the spin factors.

The torus and the Verlinde formula Since the number of ground states of
a TQFT on the torus is equal to the number of particle sectors, we label the
different ground states by the set {|a〉} for each sector a. We define operators
Ta and T̃a that create, propagate and annihilate particle-antiparticle pairs of
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species a around either of the two noncontractible loops of the torus. All
of these operators define vacuum to vacuum amplitudes since no localized
particle excitations are left after traversing the loop and annihilating the pair.

However, these sets of operators do act nontrivially in the space of ground
states1. To be precise, we pick a basis in which the operators Ta take us from
one ground state to another

Ta|0〉 = |a〉,
whereas the operators T̃a act diagonally

T̃a|b〉 = λ
(b)
a |b〉.

Since the sets of operators Ta and T̃a correspond to the creation of particles,
among themselves they satisfy the fusion algebra (2.1)

Ta Tb = ∑
c

Nc
ab Tc , T̃a T̃b = ∑

c
Nc

ab T̃c. (2.5)

Now there turns out to be a highly non-trivial relation, the Verlinde formula,
between the fusion coefficients Nc

ab and the modular S-matrix [26]. Recall that
the S-matrix basically interchanges the two non-contractible loops of the torus
and therefore the roles of the T and T̃ operators. Equivalently it transforms
from a basis in which the T̃a are diagonal to one in which the Ta are diagonal,
since the choice made in the beginning which of the two acts diagonally was
arbitrary.

The S-matrix together with the relations (2.5) can be used to find two
equivalent expressions for the superposition of ground states that is the re-
sult of creating, propagating and annihilating two particles around a non-
contractible loop of the torus. In Figure 2.1 we have given a graphical repre-
sentation of the different steps of this procedure.

At the end of the day, the result is the equality

∑
c

Nc
ab|c〉 = ∑

c,d
S†

cdλ
(d)
b Sad|c〉. (2.6)

Since the basis {|a〉} spans the space, the equality holds for each term in the

1For Abelian TQFTs the proof is rather simple and explained in for example [20]. In fact this
phenomenon was first studied in the context of gauge theories by ’t Hooft [25]. For non-Abelian
theories the most straightforward arguments come from studying CFT partition functions [26].
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Figure 2.1: Derivation of the Verlinde formula (2.7). Next to each figure is the
Hilbert space vector, next to each arrow is the operation used to get from one
vector to the other.
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sum separately.
We can go further and determine the T̃ eigenvalues λ. Fusion with the

vacuum sector does nothing and is unique, Nb
a1 = δb

a for all a and b. We use
this property in equation (2.6),

Nc
1b = δc

b = ∑
d

S†
cdλ

(d)
b S1d,

1 = ∑
d

S†
bdλ

(d)
b S1d.

If we want this to hold for all choices of b, the only possible choice for the
eigenvalues is

λ
(d)
b =

Sbd
S1d

,

resulting in the celebrated Verlinde formula

Nc
ab = ∑

d

SadSbdS†
cd

S1d
. (2.7)

2.3 Topological symmetry breaking

2.3.1 Generalities

In this section we briefly recall topological symmetry breaking, the phenomenon
that a phase transition to another topological phase occurs due to a Bose con-
densate [27, 28]. The analogy with ordinary symmetry breaking is clear if one
thinks of the particle as representations of some quantum group, and assumes
that a bosonic degree of freedom i.e. with θc = 1 – fundamental or composite
– condenses. The breaking can then be analyzed, either from the quantum
group (Hopf algebra) point of view, or from the dual or representation theory
point of view [29].

Let us illustrate this by an example of ordinary group breaking. Suppose
we have a gauge group SU(3) and a Higgs triplet that acquires a vacuum
expectation value Φ = (1, 0, 0), then the SU(2) subgroup working on the last
two entries will leave Φ invariant. Equivalently this SU(2) subgroup may be
characterized by the way the SU(3) triplet decomposes under the SU(2) action
as 3 → 2 + 1 where the singlet on the right corresponds exactly to the new
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SU(2) invariant groundstate. In that sense one may select a specific residual
gauge symmetry by choosing an appropriate Higgs representation which has
a singlet under that residual group in its branching. For example if we want
to break an SU(3) group to the SO(3) subgroup which is characterized by the
branching rule 3 (as well as 3̄) → 3 then we may choose the Higgs field to be
in the 6-dimensional irrep of SU(3), because then 3× 3 = 3̄ + 6 → 3× 3 =
1+ 3+ 5, from which follows that 6→ 5+ 1 and again the singlet on the right
corresponds to the SO(3) invariant vacuum state Φ.

In the case of general quantum groups it is this branching rule approach
which is the most natural and powerful in the context of TQFT because the
fusion algebra corresponds to the representation ring of the quantum group.
A general treatment with ample examples can be found in reference [29]. Let
us point out some essential features of this procedure that one has to keep in
mind. As the quantum group centralizes the chiral algebra in the operator al-
gebra of a CFT, one expects that reducing the quantum group will correspond
to enlarging the chiral algebra, and this turns out to be the case. In contrast
to ordinary group breaking, the topological symmetry breaking procedure in-
volves two steps, firstly the condensate reduces the unbroken fusion algebra
(also called a braided modular tensor category) A to an intermediate algebra
denoted by T . This algebra however may contain representations that braid
nontrivially with the condensed state, i.e. with the new vacuum and if that
is the case, these representation will be confined and will be expelled from
the bulk to the boundary of the sample. Confinement implies that in the bulk
only the unconfined sectors survive as particles and these are characterized
by some subalgebra U ⊂ T . Let us briefly describe the two steps separately.

From A to T Assuming that a certain bosonic irrep c will condense due to
some underlying interaction in the system, implies that c will be identified
with the vacuum of T . For our purposes, a boson is a sector with trivial
(integer) spin, though in fact in the context of 2+ 1 dimensions one has to also
require that fusion of this field with itself has a channel with trivial braiding.

The definition of the new vacuum requires to a redefinition of fields.
Firstly, fields in A that appear in the orbit under fusion with the condensed
field c are identified in T , so, if c× a = b then a, b → a′. Secondly, if a field
b forms a fixed point under fusion with the condensate c, then the field will
split at least in two parts: b → ∑i bi. The identifications and splittings of rep-
resentations can be summarized by a rectangular matrix nt

a that specifies the
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“branching" or “restriction" of fields a from in A to T with fields t, r, s, . . . :

a→∑
t

nt
a t

This branching matrix is a rectangular matrix (the number of particle types in
the A and T theories is not equal in general) of positive integers. We will also
consider the transpose of this matrix denoted as na

t which specifies the “lift"
of the fields t ∈ T to fields a ∈ A:

t→∑
a

na
t a = ∑

a∈t
a

One may now derive the fusion rules T from the fusion algebra (2.1).
Because of the identifications, it is often the case that the intermediate algebra
T though being a consistent fusion algebra, is not necessarily braided, in more
technical terms, it satisfies the “pentagon" equation but not the “hexagon"
equation. The physical interpretation of this fact is that the sectors in T do
not yet constitute the low-energy effective theory. This is so because sectors t
that have an ambiguous spin factor, meaning that not all θa of the lift a ∈ t are
equal, will be connected to a domain wall and hence are confined in the new
vacuum. The confined excitations will be expelled to the edges of the system
or have to form hadronic composites that are not confined. Yet the T algebra
plays an important role: in Ref. [30] for example, it was shown that the T
algebra governs the edge/interface degrees of freedom in the broken phase.

From T to U Some of the sectors in T will survive in the bulk, some will be
confined. The physical mechanism behind confinement in 2 + 1 dimensional
topological field theories is nontrivial braiding with the condensate. The vac-
uum state or order parameter should be single valued if carried adiabatically
around a localized particle-like excitation. If it is not single valued that would
lead to a physical string or “domain wall" extending from the particle that
carries a constant energy per unit length. The unconfined algebra U consists
of the representations in T minus the confined ones, it is this algebra that gov-
erns the low energy effective bulk theory. The confined representations can be
determined in the following way. First we define the “lift" of a representation
in T as the set of representations b ∈ A that restrict to t. Now, if all of the
representations in the lift of t braid trivially with the lift of the vacuum, the
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sector t is part of U . Otherwise, it is confined. One may prove that the U
algebra closes on itself with consistent fusion rules, while consistent braiding
is achieved by assigning the (identical) spin factors of the parent sectors of the
unbroken theory to the U fields.

Let us finally mention a useful quantity, the socalled quantum embedding
index q [31], which is a real number characterizing the topological symmetry
breaking. This quantity is defined as

q =
∑a na

uda

du
, (2.8)

where the index a runs over the sectors of the unbroken phase A, that corre-
spond to lift of any sector u or t of the algebra U or T ; the na

u is the lift of
sectors u to their parents a and da is the quantum dimension of the represen-
tation a. Observe that this expression is independent of the particular sector
u, which is a non-trivial result explained in Ref. [31].

Choosing for u the new vacuum, we have du = 1 and obtain that q just
equals the total quantum dimension of the lift of the U (or T ) vacuum in the
unbroken A theory. The quantum embedding index is the analogue for the
embedding index defined by Dynkin for the embedding of ordinary groups
[32]. As an aside we mention that the change in topological entanglement
entropy of the disk changes also by log(DA/DU) = log q in a transition from
an A to a U phase [31].

2.3.2 Example: breaking SU(2)4 to SU(3)1

Let us to conclude this discussion on topological symmetry breaking and illus-
trate the procedure with a very straightforward example, namely the breaking
of the quantum group A = SU(2)4. It has 5 irreps labeled by Λ = 0, . . . , 4
with spinfactors θa = 1, 1

8 , 3
8 , 5

8 , 1. The Λ = 4 is the only boson and we assume
it to condense. The lift of the new vacuum corresponds to the Φ = 0 + 4 of
A, and hence the embedding index q = d0 + d4 = 1 + 1 = 2. The 1 and 3
reps of A are identified, but because they have different spin factors, the cor-
responding T representation will be confined. In U we are therefore left with
the Λ = 2 rep. which splits because it is a fixed point under fusion with the
condensate as 4× 2 = 2. We write 2 → 21 + 22. The values for the spin and
the quantum dimensions and the fusion rules for these representations fully
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determine the unconfined quantum group to be U = SU(3)1. We recall that
the nomenclature of the groups is linked to the chiral algebra, it is therefore
not surprising that the SU(2)4 quantum group breaks to the smaller quantum-
group SU(3)1 which is related to a larger chiral algebra. For the chiral algebras
one has the conjugate embedding SU(2)4 ⊂ SU(3)1 which is a conformal em-
bedding. This conformal embedding in turn is induced by the SO(3) ⊂ SU(3)
embedding mentioned at the beginning of this subsection.

2.4 Observables and diagrammatics

There is a powerful diagrammatic language to express the equations describ-
ing the TQFT, which we will use to relate the values of observables as they
can be measured in the different phases. In this thesis we will use the notation
and definitions given by Bonderson [33]. Particle species are represented by
lines, fusion and splitting by vertices. A twist is represented by a left or right
twist on a particle line:

a

OO

= θa
OO

a ,
a

OO

= θ∗a
OO

a. (2.9)

The evaluation of simple diagrams is rather straightforward, and com-
plicated diagrams can be simplified using braid relations and the socalled F
symbols which follow from associativity of the fusion algebra. The simplest
examples are the closed loop of type a that evaluates to the quantum dimen-
sion da:

a OO = da, (2.10)

whereas the twisted loop equals daθa:

a = θada (2.11)
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Of particular interest are the generators of the modular group, Sab

a b

OO OO = Sab =
1
D ∑

c
Nab

c
θc

θaθb
dc, (2.12)

and Tab = e−2πi(c/24)θaδa,b, where the c is the central charge of the theory, not
to be confused with a particle type.

The importance of the rather abstract diagrammatic notation is that the
diagrams directly correspond to observables in the Euclidean lattice gauge
theory formulation in Chapter 3. In the Euclidean three dimensional formu-
lation of topological theories the values these diagrams have, correspond to
the vacuum expectation values of the corresponding anyon loop operators, for
example in the unbroken phase one may measure

〈
a OO

〉

0
= da, (2.13)

where the LHS is now defined as the value of the path integral with the nonlo-
cal loop operator for particle species a inserted and the RHS is obtained if we
are probing the system in the unbroken phase governed with the groundstate
denoted as 0 and governed by the algebra A. We use the subscript 0 because
the value of the same diagram may be different if it is evaluated in a different
phase with a groundstate that we will denote by Φ.

Our objective in Chapter 3 is to verify the theoretical predictions of the
topological symmetry breaking scheme in a class of Euclidean gauge theories
that are expected to exhibit transitions between different topological phases.
We will numerically evaluate the expectation values of various topological
diagrams using Monte Carlo simulations, and in this section we calculate the
predicted outcomes of a variety of possible measurements from theory. The
strategy has two steps, (i) the determination of the condensate — including the
measurement of the embedding index q — by evaluating the basic nonlocal
open string order parameters, given by Eq. (3.29), (ii) measuring the socalled
broken modular S-matrix and from that construct the S-matrix of the U phase.
We also will see that the condensate fixes the branching and lift matrices and
having determined those we can also predict the outcome of measurements of
other topological diagrams corresponding to the lifts of U fields to A fields .
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2.4.1 Condensate and the embedding index q

We measure the open string operators in the model. Note that in our pictorial
representation time flows upward, so a vertical line physically represents the
creation, propagation and annihilation of a single particle. For the particular
case of a DGT, which we study in this work, these lines have a realization as
operators on a spacetime lattice, see Eq. (3.29).

If the symmetry is unbroken we will have for any nontrivial field a that

〈Laā〉0 =

〈
OO

a

〉

Φ=0

= 0. (2.14)

because the diagram represents the creation and subsequent annihilation of a
single a-particle. However in the broken situation the expectation value will
be nonzero for all fields φi ∈ A in the condensate which we denote by Φ. So
writing,

Φ = 0 + ∑
i

φi (2.15)

we obtain that in general,

〈
OO

a

〉

Φ

= δaφi da. (2.16)

This in turn implies that it is simple to measure q as

∑
a∈A

〈
OO

a

〉

Φ

=

〈
OO
0

〉

Φ

+ ∑
i

〈
OO
φi

〉

Φ

= d0 + ∑
i

dφi = q (2.17)

2.4.2 The broken modular S- and T-matrices

The great advantage of switching to the modular data, that is studying the
S- and T-matrices, is that unlike the fusion coefficients these generators can
be directly measured using the anyon loop operators that arise naturally in a
three dimensional Euclidean formulation of the theory. We will evaluate the
expectation value of these S-matrices numerically in the lattice formulation of
multiparameter discrete gauge theories in Chapter 3. The measured S- and
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T-matrix elements do not satisfy the relations (2.2) directly; however, using
the measurements the full S- and T-matrices of the U theory, which do satisfy
the modular group relations, can be constructed. In the unbroken theory the
measured S-matrix elements 〈Sab〉 correspond to the expectation values of the
Hopf link with one loop colored with representation a and the other with
representation b:

〈Sab〉0 =
1
D

〈

ba

〉

0

= Sab,

where Sab is the S-matrix of the unbroken A theory. We can however also
determine the modular S-matrix of the residual U theory Suv directly from
measurements if we take the splittings of certain fields a ⇒ {ai} into account
appropriately. We will show how to do this for the DGTs in detail in Chapter 3
and will arrive at an explicit formula and algorithm to determine Suv:

Suv =
1
q ∑

ai ,bj

nai
u n

bj
v

〈
Saibj

〉
Φ

. (2.18)

This expression involves not only the branching (lift) matrix nai
u , but also the

what we will call the broken S-matrix defined as S̄aibj
= 〈Saibj

〉Φ, which, because
of the splitting, clearly involves a larger size matrix than the modular S-matrix
of the original A phase. From the broken S-matrix we may directly read
off Suv, the S-matrix of the effective low energy TQFT governed by U . An
important observation is that the values of the S-matrix elements in a broken
phase will be different from the ones in the unbroken phase, for example
because of the contribution of the vacuum exchange diagram S̃ depicted below,
in which the condensed particle is exchanged giving a nonzero contribution in
the broken phase while it would give a vanishing contribution in the unbroken
phase:

S̃aibj
=

1
q2

OOai OO bj
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In the explicit calculations later on we show that this vacuum exchange diagram
leads to a change in the S-matrix which depends on the subindices introduced
above. It turns out that it is also possible to calculate the broken S-matrix from
first principles, this will be discussed in a forthcoming paper [34].

As to be expected one finds identical rows and columns in the broken S-
matrix, for components that are identified, whereas the entries for confined
fields will be zero. With this prescription the formalism outlined above is ap-
plicable in any phase of the theory including the unbroken one where there is
no splitting and the vacuum exchange diagram gives a vanishing contribution.
The measured T-matrix on the other hand is given by

〈Tab〉Φ =
δab
da

〈

a

〉

Φ

again with 〈Tab〉0 = Tab. After measuring or calculating the S- and T-matrices
in a given phase, we can reconstruct the fusion coefficients with the help of
the Verlinde formula [26],

Nc
ab = ∑

x

SaxSbxScx

S1x
. (2.19)

To conclude, we have in this section summarized the basic features of a TQFT
and considered some aspects of topological phase transitions induced by a
Bose condensate, furthermore we explained how the measurement of the L-,
S-, and T-operators in the broken phase fully determine the quantum group
of a (broken) topological phase. The general scheme to analyse the breaking
pattern of a some multiparameter TQFT is to first use the open string opera-
tors to probe which fields are condensed in the various regions of parameter
space. In a given broken phase we can subsequently compute/measure what
we will call the broken S-matrix S̄aibj

, where as mentioned the subindex labels
the splitting of the corresponding A field. From the broken S-matrix we can
read off the S-matrix of the U theory. In Chapter 3 we will explicitly execute
this program for discrete gauge theories.



CHAPTER 3

Discrete Gauge Theories

This chapter is based on the following publications:

• F. A. Bais and J. C. Romers. Anyonic order parameters for discrete
gauge theories on the lattice. Ann. Phys. (N.Y.), 324:1168–1175, 2009,
arXiv:0812.2256 [cond-mat.mes-hall]

• F. A. Bais and J. C. Romers. The modular S-matrix as order param-
eter for topological phase transitions. New J.Phys., 14:035024, 2012,
arXiv:1108.0683 [cond-mat.mes-hall]

In this chapter we study a lattice realization of a particular example of a TQFT,
a discrete gauge theory (DGT) based on a finite group H [17, 37]. We define
these models on a three-dimensional Euclidean spacetime lattice and find that
the action in general allows for many coupling constants, which results in a
rich phase diagram. We define gauge-invariant observables (loop operators)
in one-to-one correspondence with the various particle sectors in the theory.

We then turn to a concrete example based on the group D2, the double

35
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dihedral group, which is the group of order eight that is spanned by the unit
quaternions. We use these operators to determine the effective low-energy
TQFT in various phases of broken topological symmetry. This is done by
interpreting the modular S-matrix Sab (see Section 2.2.2) as the expectation
value of the Hopf link of two loop operators corresponding to particle types a
and b, and measuring this quantity in the various vacua of the theory. In the
unbroken vacuum the familiar modular S-matrix is recovered, whereas in bro-
ken vacua the values of this matrix change. We provide a method to recover
the S-matrix of the effective low-energy theory, thus providing a method to
determine the symmetry breaking purely in terms of observable quantities.

The measurement of these observables and thus the mapping of the phase
diagram is achieved with the aid of Monte Carlo simulations. Also the order
of several phase transitions is established.

3.1 Kitaev’s Toric Code and the Z2 gauge theory

To connect with other work on topologically ordered systems, let us first go
to a Hamiltonian formalism. This is formally done by taking a timeslice of
the spacetime lattice which we will define later on in Section 3.3.1 and taking
the limit in which the temporal spacing goes to zero [38]. The Hamiltonian of
(2+1)-dimensional Z2 gauge theory on a square spatial lattice is

H = −1
2

λ ∑
l
(Pl − 1)−∑

p

1
2
(Qp1Qp2Qp3Qp4 − 1), (3.1)

where the operators Pl and Ql act on links, the second term is a sum over the
elementary plaquettes of the lattice where p1 . . . p4 are the links of a single
plaquette and λ is the coupling constant. The operators satisfy

{Ql , Pl} = 0, P2
l = Q2

l = 1,

which means a possible representation can be given in terms of Pauli matrices
Pl = σ3, Ql = σ1 acting on spin- 1

2 bosons living on the links. Loosely speaking
the Pi operators are the complex exponent of the electric fields and the Qi
operators the complex exponents of the magnetic fields. Note that a closed
string of Pi operators generates a Wilson loop, whereas a closed string of Qi
operators creates a closed Dirac-string. Gauge transformations act on the star
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of four links i1 . . . i4 adjacent to a site i

Gi = Pi1Pi2Pi3Pi4,

and to build the gauge invariant Hilbert space, one has to implement a Gauss
law for physical states |ψ〉

(1− Gi)|ψ〉 = 0 for all sites i. (3.2)

Now we can make the connection with work by Kitaev [20] and Wen [39].
Their models (Toric code, Z2 string nets) correspond to Hamiltonian Z2 DGT
where the coupling λ = 0 and the gauge constraint (3.2) is not strictly en-
forced. Setting λ = 0 makes the theory purely topological, the ground state is
an equal weight superposition of all states

∏
l∈C

Ql |0〉, (3.3)

where C is a closed loop of links and |0〉 is the state with the property Pl |0〉 =
|0〉 for all links l. Viewing the link variables as spin- 1

2 bosons, this vacuum
state corresponds to all the spins being in the up state. Since the expectation
value of any loop operator (3.3) in the ground state is equal to one. These
loops are Wilson loops in the gauge theory language and Wilson loops are the
natural observables in a gauge theory. Since they are independent of size and
their value only depends on linking with other loops or strings, the theory is
topological.

Toric code models with perturbations (corresponding to λ 6= 0 but small)
have been studied in the literature [40, 41] and it was found that the topolog-
ical properties like the ground state degeneracy are robust against such small
perturbations. In our Euclidean formulation one gets the perturbations for
free but there exists also a strictly topological limit. For the DGT based on Z2
this is discussed in the next Section 3.1.1 and it is mentioned later on for the
richer D2 model.

By not enforcing the gauge constraint (3.2) strictly but adding it as a term
to the Hamiltonian, these models allow for massive open strings. Such open
strings are not gauge-invariant at their endpoints and therefore correspond to
external charges.
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3.1.1 Euclidean formalism

The Z2 gauge theory in the Euclidean approach, where we discretize both
space and time, is described by the action

S = −β ∑
p

Up1Up2Up3Up4, (3.4)

where the sum is again over all plaquettes (now both spatial and temporal)
and the U variables are numbers ±1. Gauge transformations act on a site and
multiply all links ending on the site by −1. The partition sum

Z = ∑
{U}

e−S

and the expectation value of gauge invariant operators O

〈O〉 = 1
Z ∑
{U}
O({U}) e−S,

are the quantities of interest here. The gauge invariance, which in the Hamil-
tonian formulation was enforced by projecting out states from the Hilbert
space, is now manifest in the action and the operators. The partition sum is
over all gauge field configurations, but since all sums are finite, gauge fixing
is not required1.

If the coupling β is large, the dominant contribution from the partition
sum will be from field configurations where all plaquettes UUUU = +1. In
the limit β→ ∞ this is strictly true, and one is left with a topological quantum
field theory, as was the case for the Hamiltonian (3.1) with λ = 0. For β small
there is a confining phase, the phase transition is at β = 0.7613 [42].

In most of this work, we study the topological properties of a DGT, for a
general group H. To show that for finite coupling constant β this topological
limit is good approximation, let us perturbatively calculate the expectation
value of a Wilson loop in this Z2 theory. The Wilson loop W(C) is the product

1This even holds for continuous groups, since we integrate over the group instead of the
algebra.
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of U variables around a closed loop C

〈W(C)〉 = 1
Z ∑
{U}

UU . . . U e−S.

For large β, the action is minimized by configurations for wich all plaquettes
are +1. The first order perturbation comes from those configurations in which
one link is −1. In three dimensions, this excites 4 plaquettes, so the Boltzmann
weight for such configurations is e−4β smaller than for those with no excited
plaquettes.

If the lattice has size N × N × N, there are 3N3 links. For a contour C of
length L,

〈W(C)〉 ≈ 1− Le−4β + (3N3 − L)e−4β

1 + 3N3e−4β
≈ 1− 2Le−4β + O(e−8β).

This shows the corrections to the purely topological result W(C) = 1 are,
for β several times larger than the critical point, negligible for simulations
of reasonable lattice sizes: for a Wilson loop size 10 × 10, β = 3.0 yields
corrections only in the third digit.

Another gauge-invariant quantity is the ’t Hooft loop, which lives on a
loop C′ of the dual lattice. Such a loop pierces a number of plaquettes p, and
the ’t Hooft operator

H(C′) = ∏
p∈C′

e−2β Up1Up2Up3Up4 ,

flips the sign of the coupling β → −β for these plaquettes. This forces a Z2
magnetic flux through these plaquettes. We will define operators generalizing
the ’t Hooft and Wilson loops for general non-Abelian DGTs shortly.

3.1.2 Phase structure

The action (3.4) can realize three phases when one also allows for negative
coupling. For large positive β, the phase mentioned before is realized, where
almost all plaquettes2 are +1. For large negative β, almost all plaquettes

2This works for a square 3D lattice with periodic boundary conditions. We have not investi-
gated other lattices, but one can imagine that types of frustration might occur here.
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β+1

β-1

Confining phase

U  = -1p

U  = +1p

Ordered phase

Ordered phase

Figure 3.1: Phase diagram for a pure Z2 gauge theory.

are −1. For small |β|, a confining phase where the magnetic Z2 flux has
condensed is realized.

To study the phase diagram of a (non-Abelian) DGT in full, we find it
convenient to formulate the action in the class basis, instead of the irrep basis.
This means we do not take the character of the group element of the plaquette
product UUUU in the action, but we define delta functions on each class. We
will explain in detail how this works in Section 3.3.1. For Z2 the phase dia-
gram is one-dimensional, but the introduction of a second coupling constant
will get rid of the need for negative couplings:

S = −∑
p

(
β+1δ+1(Up1Up2Up3Up4) + β−1δ−1(Up1Up2Up3Up4)

)
, (3.5)

where δA(U) for a group element U and a conjugacy class A gives +1 if
U ∈ A and zero otherwise. For non-Abelian groups this formulation makes
the phase diagram much more intuitive, for Z2 it is rather artificial. In Figure
3.1 the phase diagram of the pure Z2 gauge theory is shown as a function
of the conjugacy class couplings β+1 and β−1. Later in this thesis we present
similar phase diagrams for the D2 gauge theory.

It is well-known that the inclusion of matter coupled to the gauge fields
complicates the phase diagram strongly. The question of whether there ex-
ist good order parameters to distinguish the phases in coupled gauge-matter
systems is interesting in its own right and highly non-trivial [43], but it is not
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something we will go into here.

3.2 Quantum Double and Discrete Gauge Theories

The excitations in gauge theories fall into two classes, which we call electric
and magnetic. The electric excitations are the fields that transform nontrivially
under the gauge group, either put into the theory as external charges or by
explicitly introducing extra dynamical terms in the action. An example is the
particle-antiparticle pair put into the Z2 gauge theory by insertion of a Wilson
loop in the action.

The magnetic class of excitations are the topologically nontrivial solutions
to the gauge field equations. As has been discussed in section 1.2, there exists
a great many of such solutions, but we will apply the notion “magnetic" solely
the solitonic excitations. In planar physics, see table 1.1, these are the fluxes.

3.2.1 Electric and magnetic symmetries

In what follows, we will discuss the way in which both the electric and mag-
netic excitations of a discrete gauge theory transform under gauge transfor-
mations, followed by a part on more exotic excitations, the dyons, which carry
both magnetic and electric charge. After this, the mathematical framework of
the quantum double [44], in which these notions stick together, will be built up
[45].

In this discussion, spacetime is continuous. This restricts the gauge free-
dom: if we want the map defining a gauge transformation to be smooth and
continuous, it has to be a constant in the case of a discrete group. Therefore
only global gauge transformations are allowed in what follows3.

The discrete group under consideration is denoted H, group elements are
g, h ∈ H, and a Hilbert space formalism with Dirac notation is used for the
fields. Matrix indices are suppressed.

Electric charges The electric excitations of a theory are described by some
field |vα(x)〉. Here α is an index labeling the representation under which the
field transforms when acted upon by a gauge transformation. The field takes

3This might sound counterintuitive. However, the defining property of a gauge transformation
is not that it is local but that it does nothing to physical Hilbert space vectors.
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values in the vector space Vα associated with the representation α and may
take different values at different spatial locations x. However, for convenience,
we will drop this coordinate.

Let us perform a gauge transformation by an element g ∈ H:

|vα〉 7→ Dα(g)|vα〉,

where Dα(g) is the matrix representing g in representation α. This works well
for single particle states. If we want to describe the action of the gauge group
on multiparticle states, we have to make use of the direct product representa-
tion. An n-particle state is given by the direct product of single particle Hilbert
space vectors

|vα〉 ⊗ |vβ〉 ⊗ |vγ〉 · · · . (3.6)

This product is in general not irreducible anymore, even if the original repre-
sentations α, β , . . . were. To simplify the gauge action on the combination,
we can use the Clebsch-Gordan decomposition:

|vα〉 ⊗ |vβ〉 =
⊗

ξ

Nαβ
ξ |vξ〉,

where Nαβ
ξ is called the multiplicity of the ξ irrep in the product of α and

β. It is given here for a product between two representations, but it can be
generalized to n-particle states by repeated application.

Magnetic charges We have seen that electric charges are labeled by the rep-
resentations of the group. Since any representation can be decomposed into
irreps, the fundamental electric particles are labeled by the irreps of the group
H.

We now wish to construct a similar labeling for the magnetic sectors of the
theory. To achieve this we need to study the emergence of a DGT in detail in
a more physical setting than before.

3.2.2 Realizing a discrete gauge theory

To gain insight as to how the magnetic sectors of a discrete gauge theory are
labeled, consider how we can realize a discrete gauge theory to begin with.
Let us start with a G gauge theory, where G is a simply connected continuous
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group, for example SU(2). By using the Higgs mechanism, this theory can be
transformed into a H gauge theory, with H a discrete group. To this end, we
require a scalar field in some representation of G invariant under the subgroup
H.

By letting the mass of the Higgs field go to infinity, the only excitations
present in the gauge-Higgs system above are the magnetic fluxes. Parallel
transport can be realized by the untraced Wilson line operator along some
open or closed curve C

P exp(ig
∫

C
A · dx). (3.7)

This object will in principle take values in the full gauge group G. Let us use
this object to take the Higgs field at a certain point x, transport it along C, and
close C such that we end up at the same point x again, We desire the Higgs
field to be single valued, so operator (3.7) should act trivially upon it. Since
the Higgs field has invariance under the discrete subgroup H, we see that for
all closed curves C, the untraced Wilson loop takes values in H. Therefore,
magnetic fluxes are labeled by group elements of H, as a Wilson loop operator
measures the magnetic flux within the loop.

However, in the non-Abelian case, this is not the complete story. Let us
consider charges introduced in the theory that are not H-invariant and their
transport around a flux. First we work in a gauge where the flux is labeled
by g ∈ H. If we parallel transport a charge in representation α around it, the
topological interaction between them works as

|vα〉 7→ Dα(g)|vα〉. (3.8)

Let us compare this event to another situation, where we first perform a global
gauge transformation by the group element h. This transformation has two
effects: it acts on the internal space of the α charge with the element h and
it will change the flux to some unknown value g′. The parallel transport
equivalent to equation (3.8) is now given by

Dα(h)|vα〉 7→ Dα(g′)Dα(h)|vα〉 = Dα(g′h)|vα〉.

After this parallel transport, let us transform back to the original gauge by
performing a transformation with element h−1. The effect of parallel transport
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is now as follows:

|vα〉 7→ Dα(h−1g′h)|vα〉.

Since we work in the same gauge as in equation (3.8), the result should be the
same. Therefore we arrive at the equality

g′ = hgh−1.

This is the transformation law for a flux labeled by a group element g under
a gauge transformation h. The gauge invariant notion for the magnetic sec-
tors of the theory is thus not given by individual group elements, but by the
conjugacy classes of H.

However, although the above effect is inherently quantum mechanical, it
still is not a complete treatment of the full quantum theory. We have neglected
the fact that these fluxes might be in a superposition of classical states. To
make this more clear in our notation and also pave the way for the quantum
double treatment, from now on we will also denote fluxes as kets in a vector
space. The vector space of interest here is the group algebra CH, the space of
formal linear combinations of group elements

CH =

{
∑

i
ci|gi〉

∣∣ci ∈ C, |gi〉 ∈ H

}
. (3.9)

Concluding what we have learned so far: the electric sectors of the theory
are labeled by the irreducible representations α and the magnetic sectors are
labeled by the conjugacy classes A. Now let us study how the fluxes interact.

Interactions between fluxes and flux metamorphosis Consider the situation
where two fluxes in states g1 and g2 are next to each other, the former to the
left of the latter. An electric charge transported around the two will be acted
upon by the product of the two,

|vα〉 7→ Dα(g1g2)|vα〉. (3.10)

Let us now define a counterclockwise interchange, or braid, operator for this
pair. What is the effect of such an interchange on the internal space of the
fluxes, that moves g2 to the left of g1, in a counterclockwise manner?
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Let us gauge the system such that the flux starting as g1 remains un-
changed and g2 transforms into g′2. We know that an electric charge at a
large distance having topological interactions with the pair should not feel
any effect of the interchange, leading to

g1g2 = g′2g1 (3.11)

g′2 = g1g2g−1
1 . (3.12)

This class of topological interactions between magnetic fluxes, called flux
metamorphosis [17] appear only when there are nonAbelian magnetic sectors
present, otherwise the conjugation in equation (3.12) is trivial.

In terms of the braid operator R acting on the two-particle Hilbert space
of the two pure fluxes we can formulate this as follows:

R : CH ⊗CH → CH ⊗CH

R|g1〉 ⊗ |g2〉 = |g1g2g−1
1 〉 ⊗ |g1〉.

As a corrolary we can also derive the action of moving a flux around another
flux, back to its original location, called a monodromy

R2|g1〉 ⊗ |g2〉 = |(g1g2)g1(g1g2)
−1〉 ⊗ |g1g2g−1

1 〉. (3.13)

The product of the two fluxes after the monodromy is still g1g2, as should be
the case.

Determining unknown flux The interactions between fluxes can be used
to determine the magnetic charge of an unknown flux. The group elements
form an orthonormal basis for the group algebra CH in the sense 〈gi|gj〉 = δij,
which allows us to determine the flux of an unknown magnetic excitation |h〉
by performing a series of interference experiments. We do this by calculating
the matrix element

〈h| ⊗ 〈gi|R|gi〉 ⊗ |h〉 = 〈gi|hgih−1〉〈h|(gih)h(gih)−1〉 (3.14)

= δgi ,hgih−1 δh,(gih)h(gih)−1 . (3.15)

By repeating this experiment for all fluxes gi, we obtain a set of matrix ele-
ments unique for the flux h, allowing this flux to be uniquely established.
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Dyonic sectors Discrete gauge theories also carry dyons in their spectrum,
sectors with both magnetic and electric quantum numbers [45]. Let us start
out with a magnetic flux, and try to attach some electric charge to it. Say we
first try to attach a representation α of the full discrete group H to a given flux
in a conjugacy class A. The ket describing this dyonic state is given by

|g, vα〉 = |g〉 ⊗ |vα〉 ∈ CH ⊗Vα, (3.16)

where vα is a vector in the carrier space Vα of the representation α and g lives
in the group algebra CH. Let us try to probe this sector using test excitations
to find out which electric representation is present, in an experiment akin to
equation (3.14). We arrive at the matrix element

〈g, vα| ⊗ 〈gi|R|gi〉 ⊗ |g, vα〉 = 〈g, vα|gigg−1
i , Dα(gi)vα〉〈gi|(gig)gi(gig)−1〉

= 〈vα|Dα(gi)vα〉δg,gi gg−1
i

.

The delta function in this expression restricts the set of group elements we can
use to calculate nonzero matrix elements to the group elements that commute
with g. The physical origin of this is clear: if we probe the long-distance
electric charge of a dyonic sector with a flux not commuting with the magnetic
charge on the dyon, the internal flux state of the dyon ends up orthogonal to
its original orientation.

The above means that not all charges can unambiguously be attached to a
given flux. Only charges forming a representation of the centralizer gN, the
set of elements in H commuting with g, can be implemented in a consistent
manner.

3.2.3 Unified framework: quantum double

Let us recall what we have seen so far. Electric sectors are labeled by ir-
reducible representations α of the gauge group and the internal space of an
electric excitation is the carrier space of its representation Vα. Magnetic sectors
are labeled by the conjugacy classes A of the gauge group. Since a magnetic
excitation can be in a linear superposition of classical fluxes, its internal space
is the group algebra CH. The dyonic sectors are labeled by both electric and
magnetic quantum numbers, but its electric representations are restricted to
those of the centralizer gN of the flux g.
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We will now construct all of the above in a more unified framework. We
denote a general state in a discrete gauge theory as

|h, vα〉 ∈ VA
α ,

where we have defined the combined Hilbert space VA
α for general discrete

gauge theory sectors labeled by a class A and a centralizer charge α. Let us
define two operators that can work on the internal states of particles. The first
operator, Pg, projects out the flux g

Pg|h, vα〉 = δg,h|h, vα〉,

whereas the second operator, which we denote by g, performs a global gauge
transformation

g|h, vα〉 = |ghg−1, Dα(g)vα〉.
These operators do not commute, and realize the algebra

PgPg′ = δg,g′Pg

hPg = Phgh−1 h

The set of combined flux projections and gauge transformations {Pgh}g,h∈H
generates the quantum double D(H), a Hopf algebra. We will give all the def-
initions of Hopf algebra operations in what follows, but first we will construct
irreducible representations and see they correspond directly to the electric,
magnetic and dyonic sectors of a discrete gauge theory.

Constructing irreps We now turn to finding the irreducible representations
for this Hopf algebra: this allows us to label all of the sectors in the spectrum.
The representation theory of the quantum double D(H) of a finite group H
was first worked out in [46] but here we follow the discussion presented in
[37].

Let A be a conjugacy class in H. We will label the elements within A as
follows:

{Ah1,A h2, · · · ,A hk} ∈ A,

for a class A of order k. In general, the centralizers for the different group
elements within a conjugacy class are different, but they are isomorphic to
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one another. Let AN ⊂ H be the centralizer for the first group element in the
conjugacy class A, Ah1.

The set AX relates the different group elements within a conjugacy class
to the first defining element h1

AX =
{

Ax1,A x2, · · · ,A xk
∣∣Ahi =

A xA
i hA

1 x−1
i

}
. (3.17)

This still leaves a lot of freedom, but we fix our convention such that Ax1 = e.
The centralizer AN, being a group, will have different irreps, which we label
by α. The vector space for a representation α is spanned by a basis αvj. The
total Hilbert space that combines magnetic and electric degrees of freedom,
VA

α , is then spanned by the set of vectors
{
|Ahi,α vj〉

}
,

where i runs over the elements of the conjugacy class, i = 1, 2, . . . , dimA and
j runs over the basis vectors of the carrier space of α, j = 1, 2, . . . , dimα.

To see that this basis is a natural one to act on with our flux measure-
ments and gauge transformations, consider an irreducible representation ΠA

α

of some combined projection and gauge transformation Phg

ΠA
α (Phg)|Ahi,α vj〉 = δh,gAhi g−1 |gAhig−1, ∑

m
Dα(g̃)α

mjvm〉,

where the element g̃ is the part of the gauge transformation g that commutes
with the flux Ah1, defined as

g̃ =A x−1
k gAxi, (3.18)

with Axk implicitly defined by Ahk = gAhig−1. This indeed commutes with
the element Ah1:

Ahk = gAxA
i hA

1 x−1
i g−1 →A hA

1 x−1
k =A x−1

k gAxA
i hA

1 x−1
i g−1
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So

Ah1 g̃ = AhA
1 x−1

k gAxi

= Ax−1
k gAxA

i hA
1 x−1

i g−1gxi

= Ax−1
k gxih1 = g̃Ah1.

Ribbon element By viewing a dyon as a combination of a magnetic flux and
an electric charge with some spatial seperation between the two, we can define
an operator that signals the spin of the excitation. Since spin is the eigenvalue
of a state belonging to the operator that rotates the state by 2π, the following
operator, called the ribbon element c, will do the job

c = ∑
g∈H

Pgg.

It is a central element in D(H) and hence can be used to label its irreps.
Letting c work on a given state leads to the relation

ΠA
α

(
∑
g

Pgg

)
|Ahi,α vj〉 = |Ahi, ∑

m
Dα(

Ah1)
α
mjvm〉,

And since the element Ah1 commutes with all elements in the centralizer AN
the operator c, by Schur’s lemma, needs to be proportional to the unit matrix

Dα(
Ah1) = e2πis(A,α)1α,

where we have defined the topological spin s of each sector of D(H). This is
related to the “twist" defined earlier in Section 2.2.1 by

θ(A,α) = e2πis(A,α) .

Coproduct We can also use the Hopf algebra language to act on multiparticle
states. The coproduct ∆, the coalgebraic dual to multiplication

∆ : D(H)→ D(H)⊗ D(H),
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is the natural object for this purpose which satisfies a property called coasso-
ciativity:

(∆⊗ id) ◦ ∆ = (id⊗ ∆) ◦ ∆,

where id is the identity map. Given the flux projectors Ph and gauge transfor-
mations g, the concrete construction is as follows:

∆(Phg) = ∑
h′h′′=h

Ph′g⊗ Ph′′g.

The constraint in this sum means we project out all combinations of fluxes
that carry total flux h and implement a gauge transformation by the group
element g on both excitations.

In the case of D(H) with H an Abelian group, the coproduct also satisfies
cocommutativity. We first define τ, the flip operator:

τ : D(H)⊗ D(H) → D(H)⊗ D(H)

Phg⊗ Ph′g
′ 7→ Ph′g

′ ⊗ Phg,

then cocommutativity amounts to ∆ = τ ◦ ∆.
On the representation level the comultiplication leads to the definition of

the tensor product or fusion rules of states.

Counit In an algebra, there exists the unit element that makes multiplication
act as the identity map. In our Hopf algebra, the element doing the same for
comultiplication is the counit

ε : D(H)→ C,

which acts in such a way that

(ε⊗ id) ◦ ∆ = id = (id⊗ ε) ◦ ∆.

On the representation level, this is precisely what is expected from the vacuum
irrep. Fusing a given irrep with the vacuum sector, be it from the right or the
left, should keep a state invariant

Πe
1 ⊗ΠA

α ' ΠA
α ' ΠA

α ⊗Πe
1.
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Fusion The direct product of two irreducible representations of a group is
in general not irreducible anymore. It decomposes into a direct sum of ir-
reps, with multiplicities given by the Clebsch-Gordan coefficients. For direct
products of irreps of a Hopf algebra, there is an analogous decomposition

ΠA
α ⊗ΠB

β =
⊗

C,γ

NABγ
αβC ΠC

γ ,

where the coefficients can be calculated from the Verlinde formula, see [?].
This relation describes the possible channels ΠC

γ two particles ΠA
α and ΠB

β can
fuse into. Alternatively, one can use it to work out the different decay channels
for a single particle state that can be regarded as a composite of ΠA

α and ΠB
β .

Braiding and the universal R-matrix In the scattering experiments described
by equation (3.14), we already alluded to the braid operator R. We will now
explicitly present a construction. Acting on a two-particle state, we want the
right particle to be acted upon by the flux of the left particle and then have
their positions interchanged. It is useful to decompose the braid operator into
into the latter part, which is the flip operator τ and the former part, called the
universal R-matrix

R = ∑
h
(Ph, e)⊗ (1, h) ∈ D(H)⊗ D(H).

The first term projects out the flux of the first particle, which is then imple-
mented on the second. Combining this with the representation functions and
the flip operator gives us the braid operator

RAB
αβ = τ ◦ (ΠA

α ⊗ΠB
β)(R).

Quasi-cocommutativity It can be checked that the braiding operator and the
coproduct commute, which is expected from physical considerations, since the
local interchange of two particles cannot affect the long-range properties of the
pair

∆(Phg)R = R∆(Phg). (3.19)
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This is a consequence of the relation:

(τ ◦ ∆(Phg))R = R∆(Phg)

Quasi-triangularity Given two particles, the effect of braiding the second
around the first and then letting the first decay should equal letting the decay
process take place first and then braiding the second particle around the decay
products.

By using explicit matrix notation, we can specify the action of the R-matrix
on three-particle states. Let us first write the universal R-matrix as follows:
R = ∑k Rk

l ⊗ Rk
r . Now, for actions on three-particle states, we define Rij, the

triple product with Rk
l on position i, Rk

r on position j and 1 on the other
position. For example:

R23 = ∑
k

1⊗ Rk
l ⊗ Rk

r

R31 = ∑
k

Rk
r ⊗ 1⊗ Rk

l

The physical condition described above is then formulated as the quasi-triangularity
conditions, illustrated in Figure 3.2:

(∆⊗ id)R = R13R23 (3.20)

(id⊗ ∆)R = R13R12 (3.21)22 Chapter 2. Quantum double symmetry

PSfrag replacements

=

(a) Relation (2.26)

PSfrag replacements

=

(b) Relation (2.27)

Figure 2.1: Quasi-triangularity

Yang–Baxter equation The condition (2.24) together with either (2.26) or (2.27)
give the equality

R12R13R23 = R23R13R12, (2.28)

which leads to the Yang–Baxter equation (recall figure 1.4 on p.11) for three-particle
states (1.21), assuring that braiding of three particles is uniquely defined.

2.4 Anti-particles – Antipode
From high-energy physics we know that for every particle in a theory there exists an
anti-particle carrying the opposite quantum numbers. In particular, a particle and its
anti-particle are able to fuse into the vacuum sector.

Recall that for a representation π of a group G, the anti-particle is given by the dual
representation π , defined by

π(g) = π t(g−1) ∀ g ∈ G ⇒ π = π t ◦ s, (2.29)

where s : G → G is the group operation of taking the inverse of an element, and the
superscript t denotes matrix transposition.

For our bialgebra D(H) we are now looking for an operation S which will be the
analogue of taking a group inverse. This operation is called the antipode (p. 104) and
it is given by the linear map S : D(H) → D(H) satisfying

µ ◦ (S ⊗ id)◦∆ = 1ε = µ ◦ (id⊗S)◦∆. (2.30)

From the requirement (2.30), one can deduce that the antipode is an anti-algebra mor-
phism, i.e. S

(
(Ph,g)(Ph′ ,g

′)
)

= S(Ph′ ,g
′)S(Ph,g), and an anti-coalgebra morphism, i.e.

(S ⊗S)◦∆ = ∆op ◦S.
The antipode for D(H) is defined by

S(Ph,g) = (Pg−1h−1g,g
−1). (2.31)

Note that the antipode does not have to be invertible, but it always is for semisimple
Hopf algebras (lemma A.3). Furthermore, although its corresponds to the inverse of
a group in the above mentioned fashion, there are some important differences: for
example S

(
λ (Ph,g)

)
= λS(Ph,g) ∀ λ ∈ C by linearity, where we might have expected

λ−1S(a).

(a) (∆⊗ id)R = R13R23

22 Chapter 2. Quantum double symmetry

PSfrag replacements

=

(a) Relation (2.26)

PSfrag replacements

=

(b) Relation (2.27)

Figure 2.1: Quasi-triangularity

Yang–Baxter equation The condition (2.24) together with either (2.26) or (2.27)
give the equality

R12R13R23 = R23R13R12, (2.28)

which leads to the Yang–Baxter equation (recall figure 1.4 on p.11) for three-particle
states (1.21), assuring that braiding of three particles is uniquely defined.

2.4 Anti-particles – Antipode
From high-energy physics we know that for every particle in a theory there exists an
anti-particle carrying the opposite quantum numbers. In particular, a particle and its
anti-particle are able to fuse into the vacuum sector.

Recall that for a representation π of a group G, the anti-particle is given by the dual
representation π , defined by

π(g) = π t(g−1) ∀ g ∈ G ⇒ π = π t ◦ s, (2.29)

where s : G → G is the group operation of taking the inverse of an element, and the
superscript t denotes matrix transposition.

For our bialgebra D(H) we are now looking for an operation S which will be the
analogue of taking a group inverse. This operation is called the antipode (p. 104) and
it is given by the linear map S : D(H) → D(H) satisfying

µ ◦ (S ⊗ id)◦∆ = 1ε = µ ◦ (id⊗S)◦∆. (2.30)

From the requirement (2.30), one can deduce that the antipode is an anti-algebra mor-
phism, i.e. S

(
(Ph,g)(Ph′ ,g

′)
)

= S(Ph′ ,g
′)S(Ph,g), and an anti-coalgebra morphism, i.e.

(S ⊗S)◦∆ = ∆op ◦S.
The antipode for D(H) is defined by

S(Ph,g) = (Pg−1h−1g,g
−1). (2.31)

Note that the antipode does not have to be invertible, but it always is for semisimple
Hopf algebras (lemma A.3). Furthermore, although its corresponds to the inverse of
a group in the above mentioned fashion, there are some important differences: for
example S

(
λ (Ph,g)

)
= λS(Ph,g) ∀ λ ∈ C by linearity, where we might have expected

λ−1S(a).

(b) (id⊗ ∆)R = R13R12

Figure 3.2: Quasi-triangularity conditions.
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Modular data from the quantum double To conclude we give a simple ex-
pression for the modular S-matrix that can be obtained by calculating the trace
of the monodromy matrix

S(A,α)(B,β) =
1
|H| ∑

g∈A,h∈B,[g,h]=e
Trα(x−1

g hxg)
∗ Trβ(x−1

h gxh)
∗, (3.22)

where [g, h] is the group theoretical commutator: [g, h] = ghg−1h−1.

3.3 Euclidean approach to DGTs

Until now, what we have done is to set the stage for DGTs. We have shown
that they can arise by breaking a Yang-Mills theory by some exotic Higgs con-
densate invariant under a discrete subgroup H of the continuous gauge group.
Now we take a different viewpoint on these matters by directly formulating
a DGT on a spacetime lattice. We show that the centralizer charge appear-
ing in the dyonic sectors of the theory makes a reappearance in the order
parameters, which are generalizations of the Wilson and ’t Hooft loops.

3.3.1 Lattice actions and observables

We discretize three-dimensional spacetime into a set of sites i, j, · · · using a
rectangular lattice. The gauge field Uij [47], which takes values in the gauge
group H, lives on the links ij, jk, . . . connecting sets of neighboring sites. The
links are oriented in the sense that Uij = U−1

ji .
We note that the gauge field Uij takes care of the parallel transport of

matter fields that are charged under the gauge group from site i to site j.
An ordered product of links along a closed loop is gauge invariant up to
conjugation by a group element and measures the holonomy of the gauge
connection. Gauge transformations are labeled by a group element gi ∈ H
and are performed at the sites of the lattice. The gauge field transforms as

Uij 7→ gi Uij g−1
j , (3.23)

where the orientation of the links (incoming or outgoing) has to be taken into
account as shown in Figure 3.3.
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i3

i1

i0

i4

i2

i6

i5

Figure 3.3: In our convention a gauge transformation g at location i1 trans-
forms Ui1i2 → gUi1i2 , Ui1i4 → gUi1i4 , Ui1i6 → gUi1i6 , Ui0i1 → Ui0i1 g−1,
Ui3i1 → Ui3i1 g−1, Ui5i1 → Ui5i1 g−1.

The standard form for the lattice gauge field action makes use of the or-
dered product of links around a plaquette ijkl:

Up = Uijkl = Uij Ujk Ukl Uli ,

which transforms under conjugation by the gauge group,

Up 7→ gi Up g−1
i .

The gauge action per plaquette which corresponds to the Yang-Mills form F2
µν

in the continuum limit for H = SU(N), is given by

Sp = −∑
α

βαχα

(
Up
)

, (3.24)

where χα is the group character in irrep α and βα is inversely proportional
to the square of the coupling constant for irrep α. This is known, for H =
SU(2) and the sum over representations limited to the fundamental one, as
the Wilson action [47].

For SU(N) gauge theories one usually only includes the fundamental rep-
resentation and is thus left with only one coupling constant. This is not neces-
sary however: gauge invariance of the action is ensured by the fact the char-
acters are conjugacy class functions, and therefore we will consider actions
where the number of independent couplings equals the number of conjugacy
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classes i.e. the number of irreps (for a finite group these numbers are finite
and equal).

For our purposes, namely the study of magnetic condensates in DGTs,
equation (3.24) is not the most convenient to work with. We perform a change
of basis in the space of coupling constants to write it as a sum over delta
functions on conjugacy classes A: δA(h) = 1 if h ∈ A, and 0 otherwise. In this
basis the action becomes

Sp = −∑
A

βAδA
(
Up
)

, (3.25)

similar to the action of the Z2 gauge theory (3.5), where the conjugacy classes
are just +1 and −1.

This formulation allows us in particular to directly control the mass of the
different fluxes in the theory, which will ease the search for different vacua
in the phase diagram. Increasing the coupling constant for a certain conju-
gacy class (magnetic flux) A will increase the contribution of configurations
carrying many A fluxes to the path integral. Likewise, setting all βA to zero
except βe, the coupling constant for the trivial conjugacy class, will result in
an “empty" vacuum and therefore an unbroken phase.

To perform the transformation to the conjugacy class basis, we need to
make use of the following orthogonality relations valid for all finite groups H

∫

H
dg χα(g)χ∗β(g) = δα,β , (3.26)

∑
α∈R

χα(g)χ∗α(h) =
|H|
|A| if g, h ∈ A (3.27)

= 0 otherwise,

where |H| is the order of the group H, |A| is the order of the conjugacy class
A, χα(·) is the character in irrep α, R is the set of irreps and group integration
is defined as ∫

H
dg f (g) =

1
|H| ∑

g∈H
f (g).

Equations (3.26) and (3.27) show that the irreducible representations of a
group H form an orthonormal set for functions on conjugacy classes of H.
We thus expect the conjugacy class delta function to be expressible in terms
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of characters
δA(g) = ∑

α∈R
cαχα(g),

for some set of constants {cα}. We multiply both sides of this expression by
a character of the same group element in another irrep β and perform the
integrations by use of the orthogonality relations (3.26) and (3.27)

∫

H
dg χ∗β(g)δA(g) = ∑

α∈R
cα

∫

H
dg χ∗β(g)χα(g),

|A|
|H|χ

∗
β(A) = ∑

α∈R
cαδαβ = cβ,

where the slightly abusive notation χα(A) means the character of any group
element of A in the representation α. This shows that

δA(g) = ∑
α∈R

|A|
|H|χ

∗
α(A)χα(g), (3.28)

which in turn implies that the the difference between (3.24) and (3.25) is just
a change of basis:

∑
A∈C

βA(βα)δA(g) = ∑
α∈R

βαχα(g),

where C is the set of conjugacy classes and βA(βα) is given by

βA = ∑
α

βαχα(A).

To probe the physics of the system for a fixed set of values of the coupling
constants in the action, we will use a set of order parameters and phase indi-
cators. These order parameters are in one-to-one correspondence with the set
of fundamental anyonic excitations of the theory.

3.3.2 Order parameters and phase indicators

We distinguish two different sets of order parameters that are closely related
to one another. The first is the set of closed loop operators, that physically cor-
respond to the creation, propagation and annihilation of an anyon-anti-anyon
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pair in spacetime. The second is the set of open string operators that create,
propagate and annihilate a single anyon. In the background of a trivial vac-
uum, only the loops can have nonzero expectation values, since the creation
of a single particle would violate the conservation of the quantum numbers
of the vacuum in such a background. This means that the open strings tell us
something about possible Bose condensates, whereas the closed loops tell us
about the behaviour of external particles put into this background. We define
the open string operators only for the purely magnetic sectors, since in this
work we only study magnetic condensates4.

First we will define the loop operators, which are a generalization of the
Wilson and ’t Hooft loops. They create a particle-antiparticle pair from the
vacuum and annihilate them at a later time. These loops allow us to calculate
Aharonov-Bohm type phases and determine which anyonic excitations will
be confined. In SU(N) gauge theories, the Wilson loop for a free excitation,
e.g. in the Higgs phase of SU(2) theory, in general falls off as e−cP, with P the
perimeter of the loop, whereas a confined excitation, such as the 3 charge of
an external quark source in pure SU(3) gauge theory describing QCD, falls
off as e−c′A, with A the area of the loop.

Because the excitations in a DGT are gapped, numerically we find that the
expectation values of loop operators are constant as a function of size. The
argument for this behaviour for the Z2 theory is in Section 3.1.1. Although
only strictly true in the limit of infinite coupling constant, the gap supresses
the dependence on size so strongly, we will assume that the theory is a purely
topological one in the region of coupling constant space in which we are in-
terested.

Let us draw a closed loop on the dual lattice, this loop pierces a set of
plaquettes C through which we will force magnetic flux. Now draw another
loop, this time on the real lattice, such that (i) each point of this loop lies on the
corner of a plaquette in C and (ii) the two loops do not link5. The combination
of the two loops establishes a framing: we have selected a location for the
electric charge of a flux-charge composite. This framing also provides us with

4Electric condensates break the gauge group H to some subgroup K by the conventional Higgs
breaking, this implies in the present context that D(H) will be broken to D(K), which in turn
means that the fluxes in the coset G/H are confined [28].

5One can also write down a magnetic and electric loop that link for example once. This gives
the worldribbon a twist and the expectation value of such an operator allows one to calculate the
topological spin for a given excitation.
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Figure 3.4: The first two plaquettes appearing in expression (3.29). The or-
dered product Up of links around a plaquette p needs to be taken with an
orientation that has to be constant throughout the loop.

Figure 3.5: A set of plaquettes forming a closed loop on the lattice. The fat
links constitute the h-forest.
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a point and orientation on each plaquette from which to take the plaquette
product Up: for non-Abelian groups the product of the four links depends on
which corner you start.

To insert a flux h in a plaquette p ∈ C, we have to “twist" the Boltzmann
factor of this particular plaquette by locally changing the action from S(Up) to
S(h−1Up): if the minimum of the action was previously obtained for Up = e,
it is now shifted to Up = h. We want to perform this twisting procedure for
all plaquettes in C.

The notion of a group element as a magnetic flux is not gauge-invariant:
under a gauge transformation by g, a flux h transforms as g h g−1. Therefore it
is necessary to sum over the group elements h in a conjugacy class A in some
way.

One can go about this in two different, and inequivalent, ways.

• The authors in Ref. [48] only studied pure magnetic flux loops (without
electric charge) and performed a sum over the conjugacy class for each
plaquette in C individually. This leaves a gauge-invariant expression,
but the loop loses its framing, since a conjugation by the element U01
maps

h−1U01U12U23U30 → U01h−1U12U23U30,

for a plaquette spanned by group elements U01 . . . U30.

• When dealing with nontrivial braiding properties of loop operators it
is necessary to choose a basepoint i0 in space with respect to which all
operators are defined, it provides a calibration that serves as a “flux
bureau of standards”, borrowing a term from [49]. This point can be
anywhere in spacetime and does not need to be on the loop. We then
define a function kip(h, {Uij}) of h and the gauge field variables {Uij}
for the twist element that has to be inserted into the plaquette product
for plaquette p, where ip is the corner of the plaquette chosen in the
framing

kip = kip(h, {Uij}) = U−1
i0ip

h−1Ui0ip .

With this notation and the above considerations, the anyonic operator
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∆(A,α) is given by 6:

∆(A,α)(C) = ∑
h∈A

∏
pj∈C

Dα

(
x−1

Uj−1,j kj U−1
j−1,j

Uj−1,j xkj

)
eS(Upj )−S(kj Upj ). (3.29)

Here pj iterates over the plaquettes in C and Dα is the representation function
of the centralizer irrep α of AN. The link Uj−1,j neighbours the plaquette
pj, and the combination in brackets always takes values in the centralizer
subgroup of the conjugacy class A. The exponential of the difference of two
actions changes the minimal action configuration to one containing flux h for
the plaquette under consideration.

The operator in expression (3.29) is a generalization of the Wilson and
’t Hooft loops, and by constructing it we have established the desired one
to one correspondence between irreducible representations of the quantum-
group and loop operators for the pure discrete gauge theory. If we fill in for
A the trivial conjugacy class, the exponent vanishes and the x group elements
are equal to the group unit, so after we multiply out the Dα-matrices we are
left with

∆(e,α)(C) = χα (U1,2U2,3 · · ·Un−1,nUn,1) ,

where the product of Us is an ordered product along the loop on the lattice.
On the other hand, if we replace α by the trivial representation, we are left

with
∆(A,1)(C) = ∑

h∈A
∏

pj∈C
eS(Upj )−S(hpj Upj ),

which is comparable to the order parameter proposed in Ref. [48], but the
gauge invariance with respect to the transformations (3.23) is ensured in a
different way. We sum over the conjugacy class only once and insert the flux
in a gauge invariant way by parallel transporting it along the loop from a
fixed basepoint. The operator in Ref. [48] sums over the conjugacy class for
each individual plaquette. This way also gauge invariance is achieved, but the
loop loses its framing, and therefore is not suitable to describe true anyonic
charges.

The open magnetic string operators are a variant of expression (3.29) where
6This definition is different from our original definition [35] by a factor of 1

|A| . This definition
gives the correct S-matrix elements directly.
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the set of plaquettes C corresponds to an open string on the dual lattice. Look-
ing at the h-forest configurations, it can immediately be seen that such a string,
corresponding to the creation and subsequent annihilation of a single particle,
has zero expectation value in the trivial vacuum. For these strings to acquire
a non zero expectation value a vacuum exchange contribution is required, which
we will focus on now.

The vacuum exchange contribution. We use the set of operators {∆(A,α)} to
measure the elements of the S-matrix by picking two loops C1 and C2 that link
each other once

〈
S(A,α)(B,β)

〉
=
〈

∆(A,α)(C1)∆(B,β)(C2)
〉

. (3.30)

In the trivial vacuum the S(A,α)(B,β)-matrix elements of fluxes g ∈ A and h ∈ B
for which g h g−1 h−1 = [g, h] 6= e evaluate to zero (this is what we measure
using the operators (3.29) and calculate algebraically (3.22) ). If we however
measure the S-matrix elements of such noncommuting fluxes in a broken vac-
uum nonzero matrix elements can appear.

This is most easily explained by considering an example. The main con-
tribution to a single loop of pure magnetic flux is of the form pictured in
Figure 3.5. This configuration is called the h-forest state in earlier literature
[48]. Modulo gauge transformations this is the dominant configuration in the
trivial vacuum that contributes to a loop of flux labeled by conjugacy class
A, where g ∈ A. Expression (3.29) contains a sum over these group elements
within a conjugacy class, but let us for now focus on one of the group ele-
ments. Each link in this configuration has value e, except for the fat links in
Figure 3.5, they have value h. That this configuration leads to a loop or tube
of flux is easily seen: within the forest each plaquette has a value e h e h−1 = e,
whereas at the edges the value is e h e e = h (depending on the orientation of
the plaquette product). This is also the easiest way to see the origin of the
Aharonov-Bohm effect on the lattice: an electric charge loop having linking
number 1 with the flux loop will have exactly one link with value h in it,
therefore its value will be χα(h).

Consider now the dominant configuration that contributes to the S-matrix
element S(A,1)(B,1). We again pick two group elements g ∈ A, h ∈ B and draw
a similar diagram. This is shown in Figure 3.6. By similar logic this causes
the plaquettes at the boundary of either forest to have value g respectively
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Figure 3.6: The vacuum exchange contribution. Double h-forest, configura-
tion contributing to the S-matrix measurement of two non commuting fluxes.
The fat links are the g-forest and h-forest and the shaded plaquettes are a
string of [g, h] flux connecting the the two loops.

h. Inside the forests most plaquettes still have value e, however there are
some plaquettes that are different. There is a tube of plaquettes that have
value [g, h], where the two forests intersect. In general this group theoretical
commutator is not equal to identity element for nonAbelian groups. This
is the physical reason behind the appearance of zeroes in the S-matrix for
nonAbelian theories. This tube of plaquettes represents a flux [g, h] going
from the one loop to the other. In the trivial vacuum this flux will be gapped,
so the contribution of this diagram to the path integral expectation value will
be negligible.

However, a different situation appears when we are in a vacuum where
the flux [g, h] has Bose condensed. We cannot give a single configurations that
contributes dominantly to the path integral (there are many), but we can say
that configurations like the one in Figure 3.6 are now contributing since the
mass for the flux [g, h] has disappeared.

Thus we expect that in the measurements there will be cases where zeroes
in the original S-matrix will obtain a nonzero value in the broken phase.

An auxiliary AN gauge symmetry The operators (3.29) are invariant with
respect to the local H gauge transformations (3.23). However, in our formula-
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tion of the operators we have tacitly introduced another, auxiliary AN gauge
symmetry that is less obvious. A crucial property that allows one to determine
the topological symmetry breaking pattern in detail is that the loop operators
do transform nontrivially under this symmetry. In a non trivial ground state,
these symmetries may be broken and will therefore lead to the lifting of cer-
tain degeracies related with the splitting of fields in the topological symmetry
breaking process. So this hidden symmetry turns out to be a blessing in dis-
guise.

Let us first note that there is no preferred choice for the coordinate system
(3.17) we define for the conjugacy classes. Once a certain choice {xhi

} has
been made such that hi = xhi

h1x−1
hi

, a set {x′hi
} with

x′hi
= xhi

nhi
, [nhi

, hi] = e, (nhi
∈ AN) (3.31)

will do just as well. In the trivial vacuum, the S-matrix is invariant with
respect to this transformation. This is most easily seen by looking at the
algebraic expression (3.22), but it is also confirmed by our measurements of
(3.30).

This invariance can be understood on the operator level by multiplying
out the representation matrices of the centralizer in equation (3.29). Generally
this will lead to terms of the form

Trα g̃ = Trα(x−1
hk

gxhi
),

where g is the product of links on the loop and hk = g hi g−1, implying that
indeed g̃ ∈ AN. When the loop is linked with another loop, the element g
will in general be in the conjugacy class of the flux of this other loop. Under
the transformation (3.31) of the conjugacy class coordinate system, the above
expression will transform as

Trα(n−1
hk

x−1
hk

gxhi
nhi

) = Trα(nhi
n−1

hk
x−1

hk
gxhi

),

due to the cyclicity of the trace. This elucidates the invariance of the S-matrix
in the trivial vacuum under the translation of the xhi

: non-commuting fluxes
never have a non-zero matrix element, and if [g, h] = e, we have that hi = hk
and therefore nhi

n−1
hk

= e. In a non-trivial ground state where non-commuting
fluxes may have non-zero S-matrix elements due to a vacuum interchange
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contribution, the transformation (3.31) may manifest itself in different mea-
sured matrix elements. This means that in such cases the entry (A, α) may
split into multiple entries {(Ai, αi)}. As we are interested in these multiple
entries, we will in our calculations always include the nontrivial behavior of
our observables under this auxiliary AN action. This turns out to be one of
two mechanism responsible for the splitting of irreps of A into multiple irreps
of U , the other of which we turn to now.

An auxiliary H/AN symmetry There is another symmetry, but now on the
level of the fusion algebra that turns out to be useful. Suppose in the theory
there exists a rule of the form

(A, α)× (e, β) = (A, α), (3.32)

where (e, β) is some one-dimensional purely electric representation. This
turns out to be the case whenever the representation Π(e,β)(·) evaluates to
unity for all elements in AN, the normalizer of conjugacy class A. We can
prove this using the explicit expression for the fusion coefficients in terms of
the quantum double characters [37]:

N(A,α)(B,β)
(C,γ) =

1
|H|∑g,h

Tr
[
Π(A,α) ⊗Π(B,β) (∆(Ph g))

]
Tr
[
Π(C,γ) (Ph g)

]∗
. (3.33)

Picking (B, β) = (e, β) and (C, γ) = (A, α),

N(A,α)(e,β)
(A,α) =

1
|H|∑g,h

Tr

[
Π(A,α) ⊗Π(e,β)

(
∑

h1h2=h
Ph1 g⊗ Ph2 g

)]
· · ·

· · ·Tr
[
Π(A,α)(Ph g)

]∗

=
1
|H|∑g,h

Tr
[
Π(A,α)(Ph g)⊗Π(e,β)(Pe g)

]
Tr
[
Π(A,α)(Ph g)

]∗

=
1
|H| ∑

g∈AN,h∈A

Tr
[
Π(A,α)(Ph g)

]
Tr
[
Π(A,α)(Ph g)

]∗
= 1,

where in the latter line we have made use of the orthogonality of the charac-
ters. We assumed Π(e,β)(Pe g) = 1 for all g ∈A N. The sum over h is restricted



3.4. D(D2) THEORY: ALGEBRAIC ANALYSIS 65

since if h 6∈ A the matrix element will be zero and the sum over g is restricted
since if g 6∈A N the matrix element will be off-diagonal and thus not contribute
to the trace.

So we see that the fusion rule (3.32) leads to a degeneracy in the calculation
of S-matrix elements since by definition

〈

(A,α) (C,γ)

OO OO
〉

0

=

〈

(C,γ)

(e,β)

(A,α)

OO

//

//
〉

0

.

However, on the operator level this equality does not hold. Indeed, when
we probe the LHS of this equation in a non-trivial vacuum the result will in
general differ from the RHS. In particular, it turns out that the different U
representations that lift to the same A representations (A, α) differ precisely
by such a fusion. So this degeneracy may be lifted in the broken phase and
give rise to a additional splittings of certain entries (A, α). Consequently in
our numerical calculations we have to explicitly keep track of the presence
of such electric representations (e, β), that satisfy (3.32) and see whether they
give rise to additional splittings.

To conclude this section, we remark that we have very explicitly indicated
how one gets from the modular S-matrix Sab to the extended or broken S-
matrix S̄aibj

, from which the topological data of the broken U phase can be
immediately read off.

3.4 D(D2) theory: algebraic analysis

The group D2 contains eight elements that can be represented by the set of
2× 2-matrices

{1,−1,±iσ1,±iσ2,±iσ3}, (3.34)

where the σi, i = 1, 2, 3 are the Pauli spin matrices. We denote the conjugacy
classes as e = {1}, e = {−1}, X1 = {iσ1,−iσ1}, X2 = {iσ2,−iσ2}, X3 =
{iσ3,−iσ3} and the irreducible group representations as 1, the trivial irrep,
J1, J2, J3 three one-dimensional irreps and χ the two-dimensional irrep given
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by (3.34). The character table is given on the left hand side of Table 3.1. The

D2 e e X1 X2 X3
1 1 1 1 1 1
J1 1 1 1 -1 -1
J2 1 1 -1 1 -1
J3 1 1 -1 -1 1
χ 2 -2 0 0 0

Z4 1 iσi −1 −iσi
Γ0 1 1 1 1
Γ1 1 i -1 −i
Γ2 1 -1 1 -1
Γ3 1 −i -1 i

Table 3.1: Character table of the group D2 and of Z4 as a centralizer of the
conjugacy class Xi.

centralizer groups for the conjugacy classes e and e are both D2 since the
elements in these conjugacy classes constitute the center of the group. The
conjugacy classes Xi, i = 1, 2, 3 have non-trivial Z4 centralizer subgroups, of
which the character table is given on the right hand side of Table 3.1. The irre-
ducible representations of the quantum double are labeled by a combination
(A, α) of a conjugacy class A and a centralizer irrep α. The full set of fusion
rules for the D(D2) theory is given in 3.7. All in all, there are 22 sectors: the
trivial flux paired with the five irreps of D2, the e flux paired with the five
irreps of D2 and the three Xi fluxes paired with the four Z4 irreps. The sec-
tors that involve an Xi flux or a χ irrep have quantum dimension 2, the others
have unit quantum dimension. One obtains that the total quantum dimension
for the theory DA = 8.

3.4.1 Breaking: (e, 1) condensate

In this case the lift of the new vacuum is φ = (e, 1) + (e, 1), which implies that
q = d(e,1) + d(ē,1) = 2. To determine the effective low energy theory we fuse φ
with all particle sectors of the theory and look for the irreducible combinations
that appear. As before the notation (A, α) stands for a particle with magnetic
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flux A and electric charge α.

φ× (e, 1) = (e, 1) + (e, 1)

φ× (e, Ji) = (e, Ji) + (e, Ji)

φ× (e, χ) = (e, χ) + (e, χ) (∗)
φ× (e, 1) = (e, 1) + (e, 1)

φ× (e, Ji) = (e, Ji) + (e, Ji)

φ× (e, χ) = (e, χ) + (e, χ) (∗)
φ× (Xi, Γ0) = (Xi, Γ0) + (Xi, Γ0)

φ× (Xi, Γ1) = (Xi, Γ1) + (Xi, Γ3) (∗)
φ× (Xi, Γ2) = (Xi, Γ2) + (Xi, Γ2)

φ× (Xi, Γ3) = (Xi, Γ1) + (Xi, Γ3) (∗)

The lines marked with (*) have components on the right hand side that carry
different spin factors, implying that they are confinement in the broken phase.
Studying the fusion rules of the surviving combinations of irreps leads to the
conclusion that the effective U theory is D(Z2 ⊗ Z2). We denote the four
different irreps and conjugacy classes of the group Z2 ⊗ Z2 by the labels
++,+−,−+,−−, the first (second) symbol standing for the first (second)
Z2. This means D2

T = 32 and D2
U = 16. The branchings of A irreps into the
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unconfined U theory are

(e, 1) + (e, 1) → (++,++) , d(++,++) = 1

(e, J1) + (e, J1) → (++,+−) , d(++,+−) = 1

(e, J2) + (e, J2) → (++,−+) , d(++,−+) = 1

(e, J3) + (e, J3) → (++,−−) , d(++,−−) = 1

(X1, Γ0)1 → (−+,++) , d(−+,++) = 1

(X1, Γ0)2 → (−+,+−) , d(−+,+−) = 1

(X1, Γ2)1 → (−+,−+) , d(−+,−+) = 1

(X1, Γ2)2 → (−+,−−) , d(−+,−−) = 1

(X2, Γ0)1 → (+−,++) , d(+−,++) = 1

(X2, Γ0)2 → (+−,−+) , d(+−,−+) = 1

(X2, Γ2)1 → (+−,+−) , d(+−,+−) = 1

(X2, Γ2)2 → (+−,−−) , d(+−,−−) = 1

(X3, Γ0)1 → (−−,++) , d(−−,++) = 1

(X3, Γ0)2 → (−−,−−) , d(−−,−−) = 1

(X3, Γ2)1 → (−−,+−) , d(−−,+−) = 1

(X3, Γ2)2 → (−−,−+) , d(−−,−+) = 1

which all have quantum dimension du = 1 , while the confined fields are

(e, χ) + (e, χ) → t1 , dt1 = 2

(X1, Γ1) + (X1, Γ3) → t2 , dt2 = 2

(X2, Γ1) + (X2, Γ3) → t3 , dt3 = 2

(X3, Γ1) + (X3, Γ3) → t4 , dt4 = 2

and have dt = 2.
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3.4.2 Breaking: (X1, Γ0) condensate

There is an obvious symmetry in the fusion rules between the three (Xi, Γ0)
particle sectors. We choose to study the case where the (X1, Γ0) condenses.
This gives for the new vacuum φ = (e, 1) + (e, 1) + (X1, Γ0), from which follows
that q = 4 in this case. We now read off the lifts of the T fields on the right:

φ× (e, 1) = (e, 1) + (e, 1) + (X1, Γ0)

φ× (e, Ji) = (e, Ji) + (e, Ji) + δ1i(X1, Γ0) + η1i(X1, Γ2)

φ× (e, χ) = (e, χ) + (e, χ) + (X1, Γ1) + (X1, Γ3)

φ× (e, 1) = (e, 1) + (e, 1) + (X1, Γ0)

φ× (e, Ji) = (e, Ji) + (e, Ji) + δ1i(X1, Γ0) + η1i(X1, Γ2)

φ× (e, χ) = (e, χ) + (e, χ) + (X1, Γ1) + (X1, Γ3)

φ× (X1, Γ0) = (X1, Γ0) + (X1, Γ0) + (e, 1) + (e, 1) + (e, J1) + (e, J1)

φ× (X1, Γ1) = (X1, Γ1) + (X1, Γ3) + (e, χ) + (e, χ)

φ× (X1, Γ2) = (X1, Γ2) + (X1, Γ2) + (e, J2) + (e, J2) + (e, J3) + (e, J3)

φ× (X1, Γ3) = (X1, Γ1) + (X1, Γ3) + (e, χ) + (e, χ)

φ× (Xi, Γ0) = (Xi, Γ0) + (Xi, Γ0) + (Xk, Γ0) + (Xk, Γ2) (i 6= k 6= 1)

φ× (Xi, Γ1) = (Xi, Γ1) + (Xi, Γ3) + (Xk, Γ1) + (Xk, Γ3)

φ× (Xi, Γ2) = (Xi, Γ2) + (Xi, Γ2) + (Xk, Γ0) + (Xk, Γ2)

φ× (Xi, Γ3) = (Xi, Γ1) + (Xi, Γ3) + (Xk, Γ1) + (Xk, Γ3)

We have used the symbol δij which is 1 when i and j are equal and is zero
otherwise, and ηij which is 1 when i and j are not equal and is zero when
i and j are. The U theory is D(Z2) ' Z2 ⊗Z2. This means D2

T = 16 and
D2
U = 4. The lifts of the unconfined fields are:

(e, 1) + (e, 1) + (X1, Γ0)1 → (+,+) , d(+,+) = 1

(e, J1) + (e, J1) + (X1, Γ0)2 → (+,−) , d(+,−) = 1

(X2, Γ0)1 + (X3, Γ0)1 → (−,+) , d(−,+) = 1

(X2, Γ2)1 + (X3, Γ2)1 → (−,−) , d(−,−) = 1
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and of the confined fields:

(e, J2) + (e, J2) + (X1, Γ2)1 → t1 , dt1 = 1

(e, J3) + (e, J3) + (X1, Γ2)2 → t2 , dt2 = 1

(e, χ) + (e, χ) + (X1, Γ1) + (X1, Γ3) → t3 , dt3 = 2

(X2, Γ0)2 + (X3, Γ2)2 → t4 , dt4 = 1

(X3, Γ0)2 + (X2, Γ2)2 → t5 , dt5 = 1

(X2, Γ1) + (X2, Γ3) + (X3, Γ1) + (X3, Γ3) → t6 , dt6 = 2

3.5 D(D2) theory: lattice analysis

The five couplings {βA} for conjugacy class A that appear in the action of the
D(D2) theory

Sp = ∑
p
−
{

βeδe(Up) + βeδe(Up) + βX1 δX1(Up) + βX2 δX2(Up) + βX3 δX3(Up)
}

,

(3.35)
are inversely proportional to the masses of the fluxes A. For example if we put
all couplings to zero except for βe, which we make large (at least as large as 2.0
as we will see shortly), the trivial vacuum is realized: this is the configuration
where for all plaquettes Up = e. Deviations from this configuration occur
because of quantum fluctuations, but since all excitations are gapped they
will be exponentially suppressed. The gap in this vacuum is easily calculated
to be of the order of 4βe, since the smallest excitation above the configuration
in which all plaquettes are e is one in which one link has a value h 6= e. This
excites four plaquettes and changes the action (3.35) by a value of 4βe.

3.5.1 Monte Carlo considerations

For the other, nontrivial phases in this theory, the dominant configurations
contributing to the path integral are not so readily identified. To gain in-
sight into what configurations contribute we use a Monte Carlo simulation, in
particular a modified heat bath algorithm. Bluntly applying this algorithm to
our problem leads to various complications, therefore we briefly point out the
method, the complications and how we have resolved them.
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The procedure starts with some initial configuration of link variables {U}1.
We then update all links in lexicographic order, a process called a sweep,
and arrive at a new configuration {U}2. The updating process for each link
proceeds as follows. Consider the link Uij. We identify which plaquettes
contain this link: in three dimensions, there are four such plaquettes. Now we
calculate, for each element g ∈ H, what the sum of the plaquette actions for
each of these four plaquettes would be if Uij were to have the value g. This
gives a set of numbers

{Sg1 , Sg2 , · · · , Sg|H|},
where Sgk is the sum of the four plaquette actions with Uij equal to gk. We
now calculate a localized partition sum ZUij :

ZUij = ∑
g∈H

e−Sg ,

which can be used to calculate a set of probabilities {p(g)}g∈H for each group
element g

p(g) =
e−Sg

ZUij

.

After a given number of sweeps n0, the Monte Carlo algorithm arrives at the
minimum of the action and the path integral expectation value of the operator
O

〈O〉 =
∫

DU O[U] e−S[U]

∫
DU e−S[U]

(3.36)

is given by taking the average of O[{U}n], the value of O at gauge field con-
figuration {U}n:

〈O〉MC estimate =
1
m

n0+m

∑
n=n0+1

O[{U}n]. (3.37)

However, for our purposes this scheme is troublesome for two reasons:
it is tacitly assumed that the presence of the operator O in (3.36) does not
change the value of the minimum of the action S and furthermore the loops
of magnetic flux are very non-local objects and therefore highly unlikely to
appear when using a local updating algorithm. This is illustrated in Figure 3.7.
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The shift upward of the functional S[U] is due to the presence of a magnetic
flux string and the shift to the left is due to the non-locality of the magnetic
excitations. The latter shift also occurs when a single loop of flux is inserted.

S[{U}]

{U}

minimum without operator
insertion

minimum with operator
insertion

Figure 3.7: Schematic drawing of the action as a functional of the gauge field
configuration {U}. The insertion of non-commuting fluxes shifts the mini-
mum of the action to a different location in the configuration space (due to
the non-local nature of the excitations) and to a different value (due to the
presence of a string).

The minimum of the action in the calculation of an S-matrix element (3.30)
is altered by the insertions of the loop operators: the configuration for two
non-commuting fluxes carries a string (see the discussion around Figure 3.6)
that is massive and thus costs a finite amount of action. There is no way to
get rid of this string and therefore the minimum value of the action in the
presence of the two loops is shifted. We therefore have to amend the standard
MC algorithm. Defining

S = Smin + δS without operator insertion,

S̃ = S̃min + δS̃ with operator insertion,

and noticing that around the minimum the actions behave identically, imply-
ing that δS and δS̃ are the same functions, expression (3.36) becomes

〈O〉 =
∫

DU e−(S̃min−Smin)O[U] e−δS[U]

∫
DU e−δS[U]

. (3.38)
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This leads to a modified Monte Carlo average

〈O〉MC estimate =
1
m

e−(S̃min−Smin)
n0+m

∑
n=n0+1

O[{U}n]. (3.39)

We now describe two approaches to the second problem in our MC mea-
surements: the low probability that the local updating algorithm will converge
to a gauge field configuration containing a (set of) magnetic flux loop(s). We
will assume a single loop of pure magnetic flux is inserted, as nothing sub-
stantial will change in the case of multiple loops or the addition of dyonic
charge.

The first approach is based on the observation, illustrated in Figure 3.5,
that we know the gauge field configuration (up to gauge transformations)
that extremizes the action in the trivial vacuum with the insertion of a loop
of magnetic flux: the h-forest. We can therefore use this configuration as an
ansatz in the MC algorithm. We start with a “cold lattice", all links Uij = e,
except for the h-forest, for these links we set Uij = h. This is an extremum
of the action for the action if we set all βA 6=e = 0 and βe � 1. To perform
a measurement at some other value of the coupling constants, we can slowly
change the coupling constants towards the desired values, performing a few
MC updates after each step. The second approach is a more physical one. We
initialize the lattice directly at the desired point in coupling constant space.
The trick is then not to insert the loop all at once, but to slowly grow it, as
illustrated in Figure 3.8. We start by twisting the action for four plaquettes
around one link, as shown by the shaded plaquettes in the top left of Figure
3.8. After this, a number of MC updates are performed. Then the set of
plaquettes that have a twisted action is changed as in the top right corner of
the Figure. Again a number of MC updates is performed and so on. We have
checked that in the trivial vacuum one obtains the h-forest configuration using
this procedure. Both of methods to insert flux loops have been used by us and
we have verified that they lead to completely equivalent results.

3.5.2 Results

In this subsection we present the results of our Monte Carlo simulations. The
first quantity we measured was the free energy as a means to map out a suit-
able subspace of the parameter space. It gives us an indication of the validity
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Figure 3.8: Growing a flux loop in multiple steps. The shaded plaquettes have
a twisted action, and the fat links show the convergence towards a h-forest
state.

of our naive intuition about where nontrivial condensates should occur.
Once we have found some region where symmetry breaking occurs we

measure the open string expectation values to determine the respective con-
densates. After that we measure the unbroken and broken S-matrix elements.
Using the straightforward algorithm involving the auxiliary symmetries of
our loop operators discussed in section 3.3.2, allows us to find the branching
matrix na1

u as well as the S-matrix of the effective U theory in the broken phase.

Mapping out the phase diagram The space of coupling constants in our the-
ory is five-dimensional but it is not our goal to analyse it completely. We have
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restricted our search to some representative regions where nontrivial conden-
sates do indeed occur. To study the location of the corresponding phase tran-
sitions we measured the free energy F, which we define as the expectation
value of the plaquette action, averaged over the spacetime lattice. The left

Figure 3.9: Plots of the free energy F for two-dimensional planes through the
origin of the parameter space of the lattice model. In the left figure we have
the (βe, βē) plane and in the right figure we have the (βe = βX1 , βē) plane. See
text for further comments.

plot of Figure 3.9 shows F as a function of (βe and βē) and all other couplings
equal zero. For small values of all the couplings appearing in the action (3.35),
we are in the completely confining phase of the gauge theory, where all the
open string operators of magnetic flux have a non-zero expectation value, and
all loop operators carrying electric charge are confined. This corresponds to
the plateau in the graph where F is maximal and tends to zero.

The regions where the magnetic flux (e, 1) and (X1, Γ0) have condensed
can be anticipated on theoretical grounds by realizing that the coupling βA
is inversely proportional to the mass of flux A. In fact, when we look at the
subgroup KA generated by the elements in conjugacy class A, in particular

Ke = {1,−1}
KX1 = {1,−1, iσ1,−iσ1},

and set the couplings for the conjugacy classes containing the elements in KA
equal to one another, there is an extra gauge invariance Up → k Up for an
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(a) 〈δe(Up)〉 (b) 〈δe(Up)〉 (c) 〈δX1 (Up)〉

(d) 〈δX2 (Up)〉 (e) 〈δX3 (Up)〉

  confinement

All fluxes 
  condensed
All charges
  confined

Trivial
 phase

p
Trivial phase
U  = e 

pU  = e !

!e

e

  e flux
  condensate
Partial

(f) Schematic of diagram

Figure 3.10: Space-time avaraged expectation value of δA(Up) for each conju-
gacy class A. Shown is a (βe, βe)-plane in coupling constant space where the
other three couplings are zero. The color coding is such that red is the highest
and blue the lowest value in each figure. In (f) we have identified the meaning
of the various regions and the transition lines, where the red arrows indicate
the trajectories used to determine whether the transitions are first or second
order (see Figures 3.13f and 3.14f).

element k ∈ A in the plaquette action (3.35). In particular

S = β
(
δe(Up) + δe(Up)

)

is invariant with respect to Up → −1Up and

S = β
(
δe(Up) + δe(Up) + δX1(Up)

)

is invariant with respect to Up → k Up, where k ∈ {−1, iσ1,−iσ1}.
These left multiplications are exactly the kind appearing in the definition of

the (loop) order parameters (3.29). Therefore one can establish, even without
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reverting to MC measurements, that the above actions, for large values of β,
produce the desired flux condensates.

One may verify this reasoning in the Figures 3.10 and 3.11 where we have
probed the phase diagram more in detail by measuring the spacetime aver-
aged expectation value of δA(Up) for all conjugacy classes A as a function of
the relevant coupling parameters β. The red color indicates high values for
the expectation value and we see that for all coupling parameters near zero all
fluxes are condensed and thus all charges will be confined. This is what tra-
ditionally is called the “strong coupling phase (g ∼ 1/β� 1). Looking at the
colorings for the various operators one readily identifies the various phases as
indicated in the schematics of the subfigures (f). For example the symmetry
with respect to the diagonal of the Figures 3.10a and 3.10b, shows that there
are “Ising" like ordered phases, one with all plaquette values Up = e and the
other with all Up = ē. The in-between region is the region with the ē flux
condensate. Note that if the ē flux would be the only one that phase would
continue all the way to the origin, end we would exactly end up with the Z2
pure gauge theory phase diagram.

In the region with βe larger than approximately 2.0 and all other couplings
near zero, the trivial vacuum is realized. All string operators with nontrivial
magnetic flux have zero expectation value there.

There is a very direct way to determine the condensate as well as the
quantum embedding index q (see (2.8)). This is by measuring the expectation
value of the open string for each pure flux A and then summing over all
fluxes. In the (e, 1) vacuum we obtain

〈
OO

(e,1)

〉

Φ

=

〈
OO

(e,1)

〉

Φ

= 1.0,

so q = 2, whereas in the (X1, Γ0) vacuum

〈
OO

(e,1)

〉

Φ

=

〈
OO

(e,1)

〉

Φ

= 1.0,

〈
OO
(X1,Γ0)

〉

Φ

= 2.0,

so in this case q = 4. In Figure 3.12 we show the measurement of the vacuum
expectation value for the (e, 1) open string as a function of the coupling con-
stant βē, which demonstrates that such measurements clearly indicate where
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(a) 〈δe(Up)〉 (b) 〈δe(Up)〉 (c) 〈δX1 (Up)〉

(d) 〈δX2 (Up)〉 (e) 〈δX3 (Up)〉

X   and e  fluxes 

All fluxes

All charges Trivial
  condensed

  confined
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Partial confinement
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      !e
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1 

(f) Schematic of diagram

Figure 3.11: Space-time avaraged expectation value of δA(Up) for each con-
jugacy class A. Shown is a (βe, βe = βX1)-plane in coupling constant space
where the other two couplings are zero. The color coding is such that red is
the highest and blue the lowest value in each figure. In (f) we have identified
the meaning of the various regions and the transition lines, where the red ar-
row indicates the trajectory used to determine whether the transition is first
or second order (see Figure 3.13f).

the transition takes place.

Order of phase transitions There is one more issue we like to address in our
simulations, that is to determine the order of the transitions we have identi-
fied. A conventional approach is to search for a hysteresis effect across a first
order transition (see for example [50] where this approach is used to study
ZN gauge theory in 2+1d), but because of the relative modest size of the lat-
tices used this is not an optimal approach. A method that is working much
better is to directly probe the system at a given sequence of coupling con-
stants around the transition and to see whether there is a coexistence region
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where both phases occur in the sampling7. To perform these measurements
we use the parallel tempering method [51] to overcome local minima in the
action landscape. The idea behind this method is to initialize a range of lat-
tices simultaneously, all at different couplings along a trajectory in coupling
constant space starting in phase one and ending in phase two. The updates
of this ensemble then consist of the updates of each of the individual lattices
and, occasionaly, a swap of two adjacent lattices. The swap between lattices 1
and 2 is accepted with a probability

p(1↔ 2) = min
{

1,
exp (S1(1) + S2(2))
exp (S2(1) + S1(2))

}
,

where S1(2) means using the action (in particular, the set of couplings) of
lattice 1 to evaluate the field configuration of lattice 2 et cetera. One can prove
that this satisfies detailed balance. In effect, each lattice will perform a random
walk through coupling constant space along the chosen trajectory, allowing a
“cold" lattice to thermalize in the “high temperature" region, thus overcoming
the local minima of the action.

We have made measurements for the trajectories indicated by the arrows
in the Figures 3.10f and 3.11f. The results of these measurements for the hori-
zontal arrow is given in Figure 3.13 and for the vertical arrow in Figure 3.14.
We find that in that the horizontal trajectory the transition from the strongly
coupled phase corresponding to the left peak in Figure 3.13 to the trivial phase
corresponding to the right peak indeed goes through a coexistence region cor-
responding to the values of the coupling parameter where both peaks are
present as in subfigures 3.13b and 3.13c.

The result for the vertical trajectory corresponding to the transition from
the trivial phase to the broken (X1, Γ0) phase is given in figure 3.14, where
we see that the peak shifts continuously implying that the transition is second
order. We can understand this transition as follows. In this region of coupling
constant space, all fluxes except the e flux are very heavy. This means the
ground state is essentially that of a Z2 gauge theory. Since Z2 gauge theory
in 3 dimensions is Kramers-Wannier dual [52, 53] to the three-dimensional
Ising model, it has the same phase structure [42]. We therefore expect this
phase transition to lie in the same universality class.

7We would like to thank Simon Trebst for pointing this out to us.
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Figure 3.12: Vacuum expectation value of the (e, 1) open string as a function of
the coupling constant βē, showing that the nonlocal open string operators are
good order parameters to characterize topological phase transitions. Length
of the string: 4 plaquettes, measurements on a 163 lattice, βe = 3.0, other
couplings zero.

Measuring the (broken) modular S-matrices We have measured the (bro-
ken) S-matrix elements using the simple algorithm involving the auxiliary
symmetries of our loop operators. This allows us to obtain the unbroken S-
matrix as well as the branching matrix na1

u and the S-matrix of the effective U
theory in the various broken phases. Here we exploit the relation (3.22) for
the measurement, and relation (2.18) :

Suv =
1
q ∑

ai ,bj

nai
u n

bj
v

〈
Saibj

〉
Φ

,
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0.5 0.6 0.7 0.8 0.9 1.0
X∆eHUpL\

200

400

600

800

NH X∆eHUpL\ L
H1.936, 0.0, 0.0, 0.0, 0.0L

(d) βe = 1.936

Figure 3.13: The sequence of plots is across the transition from the strongly
coupled phase with all fluxes condensed and all charges coinfined, to the
trivial phase. This trajectory corresponds to the horizontal arrow in Figures
3.10f and 3.11f, where 1.906 ≤ βe ≤ 1.936 and all other couplings equal
zero. Plotted along the x-axis is average expectation value of the percentage
of trivial plaquettes with Up = e and along the y-axis we plot the number
of times that that percentage is measured in a simulation of 4000 runs on a
103 lattice. The figures clearly show a shift from peak on the left to on the
right, with a double peak in between, this is the signature of region where
both phases coexist, i.e. of a first order transition.

relating Suv to the measured S-matrix in the broken phase. We first measured
the unbroken S-matrix in the D(D̄2) phase and obtain results identical to the
matrix calculated using formula (3.22), the result is given in Table 3.2 and is of
course also consistent with the matrix obtained from the relation (2.18) with
Φ = 0. The accuracy of the measured matrix elements in represented in the
table as integers is smaller than 5%.

The branching matrices na
u can be obtained from measuring the broken S-
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(c) βē = 1.62
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(d) βē = 1.72

Figure 3.14: The sequence of plots is across the transition from the trivial
phase to the phase with the ē condensate, the trajectory corresponds to the
vertical arrow in Figure 3.10f, where 1.42 ≤ βē ≤ 1.72, βe = 3.0 and all
other couplings equal zero. Plotted along the x-axis is average expectation
value of the percentage of trivial plaquettes with Up = e and along the y-axis
we plot the number of times that that percentage is measured in a simulation
of 4000 runs on a 103 lattice. The figures only feature only a single peak
that smoothly moves from one phase to the other, indicating a smooth second
order transition, presumably corresponding to the 3D Ising model transition.

matrices. The columns in these matrices correspond to the different U sectors.
If we see two rows or columns with different parents a, b in the A theory
that are proportional to each other, a and b branch to the same U sector u.
Conversely, if different u fields correspond to the same a field that means that
the a splits in the broken phase. We have listed the results for the broken
S-matrix in the (e, 1) vacuum in Table 3.3.

To realize the splittings between the irreducible representations using the
auxiliary gauge symmetries alluded to in section 3.3.2, we found the following
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(e, 1) 1 1 1 1 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
(e, J1) 1 1 1 1 2 1 1 1 1 2 2 2 2 2 -2 -2 -2 -2 -2 -2 -2 -2
(e, J2) 1 1 1 1 2 1 1 1 1 2 -2 -2 -2 -2 2 2 2 2 -2 -2 -2 -2
(e, J3) 1 1 1 1 2 1 1 1 1 2 -2 -2 -2 -2 -2 -2 -2 -2 2 2 2 2
(e, χ) 2 2 2 2 4 -2 -2 -2 -2 -4 0 0 0 0 0 0 0 0 0 0 0 0
(e, 1) 1 1 1 1 -2 1 1 1 1 -2 2 2 2 2 2 2 2 2 2 2 2 2
(e, J1) 1 1 1 1 -2 1 1 1 1 -2 2 2 2 2 -2 -2 -2 -2 -2 -2 -2 -2
(e, J2) 1 1 1 1 -2 1 1 1 1 -2 -2 -2 -2 -2 2 2 2 2 -2 -2 -2 -2
(e, J3) 1 1 1 1 -2 1 1 1 1 -2 -2 -2 -2 -2 -2 -2 -2 -2 2 2 2 2
(e, χ) 2 2 2 2 -4 -2 -2 -2 -2 4 0 0 0 0 0 0 0 0 0 0 0 0

(X1, Γ0) 2 2 -2 -2 0 2 2 -2 -2 0 4 0 -4 0 0 0 0 0 0 0 0 0
(X1, Γ1) 2 2 -2 -2 0 2 2 -2 -2 0 0 -4 0 4 0 0 0 0 0 0 0 0
(X1, Γ2) 2 2 -2 -2 0 2 2 -2 -2 0 -4 0 4 0 0 0 0 0 0 0 0 0
(X1, Γ3) 2 2 -2 -2 0 2 2 -2 -2 0 0 4 0 -4 0 0 0 0 0 0 0 0
(X2, Γ0) 2 -2 2 -2 0 2 -2 2 -2 0 0 0 0 0 4 0 -4 0 0 0 0 0
(X2, Γ1) 2 -2 2 -2 0 2 -2 2 -2 0 0 0 0 0 0 -4 0 4 0 0 0 0
(X2, Γ2) 2 -2 2 -2 0 2 -2 2 -2 0 0 0 0 0 -4 0 4 0 0 0 0 0
(X2, Γ3) 2 -2 2 -2 0 2 -2 2 -2 0 0 0 0 0 0 4 0 -4 0 0 0 0
(X3, Γ0) 2 -2 -2 2 0 2 -2 -2 2 0 0 0 0 0 0 0 0 0 4 0 -4 0
(X3, Γ1) 2 -2 -2 2 0 2 -2 -2 2 0 0 0 0 0 0 0 0 0 0 -4 0 4
(X3, Γ2) 2 -2 -2 2 0 2 -2 -2 2 0 0 0 0 0 0 0 0 0 -4 0 4 0
(X3, Γ3) 2 -2 -2 2 0 2 -2 -2 2 0 0 0 0 0 0 0 0 0 0 4 0 -4

Table 3.2: The S-matrix for the (unbroken) D(D2) theory (up to the normalisa-
tion factor 1/DA = 1/8) as measured in the trivial vacuum. We put integers
in the table as the accuracy is below the 5%, i.e. 1 actually stands for read as
1.± 0.05.

construction to suffice. By the symbol ≡ we mean “is realized by inserting the
operator(s)".

(e, 1) vacuum

• (Xi, Γ0)1 ≡ ∆(Xi ,Γ0).

• (Xi, Γ0)2 ≡ ∆(Xi ,Γ0)∆(e,Ji).

• (X1, Γ2)1 ≡ ∆(X1,Γ2) with {xiσ1 = e, x−iσ1 = iσ2}.

• (X1, Γ2)2 ≡ ∆(X1,Γ2)∆(e,J1) with {xiσ1 = e, x−iσ1 = iσ2}.

• (X2, Γ2)1 ≡ ∆(X2,Γ2) with {xiσ2 = e, x−iσ2 = iσ1}.

• (X2, Γ2)2 ≡ ∆(X2,Γ2)∆(e,J2) with {xiσ2 = e, x−iσ2 = iσ1}.

• (X3, Γ2)1 ≡ ∆(X3,Γ2) with {xiσ3 = e, x−iσ3 = iσ1}.
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(e, 1) 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
(e, J1) 1 1 1 1 1 1 1 1 2 2 2 2 -2 -2 -2 -2 -2 -2 -2 -2
(e, J2) 1 1 1 1 1 1 1 1 -2 -2 -2 -2 2 2 2 2 -2 -2 -2 -2
(e, J3) 1 1 1 1 1 1 1 1 -2 -2 -2 -2 2 2 2 2 -2 -2 -2 -2
(e, 1) 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
(e, J1) 1 1 1 1 1 1 1 1 2 2 2 2 -2 -2 -2 -2 -2 -2 -2 -2
(e, J2) 1 1 1 1 1 1 1 1 -2 -2 -2 -2 2 2 2 2 -2 -2 -2 -2
(e, J3) 1 1 1 1 1 1 1 1 -2 -2 -2 -2 2 2 2 2 -2 -2 -2 -2

(X1, Γ0)1 2 2 -2 -2 2 2 -2 -2 4 4 -4 -4 4 -4 4 -4 4 -4 4 -4
(X1, Γ0)2 2 2 -2 -2 2 2 -2 -2 4 4 -4 -4 -4 4 -4 4 -4 4 -4 4
(X1, Γ2)1 2 2 -2 -2 2 2 -2 -2 -4 -4 4 4 4 -4 4 -4 -4 4 -4 4
(X1, Γ2)2 2 2 -2 -2 2 2 -2 -2 -4 -4 4 4 -4 4 -4 4 4 -4 4 -4
(X2, Γ0)1 2 -2 2 -2 2 -2 2 -2 4 -4 4 -4 4 4 -4 -4 4 -4 -4 4
(X2, Γ0)2 2 -2 2 -2 2 -2 2 -2 -4 4 -4 4 4 4 -4 -4 -4 4 4 -4
(X2, Γ2)1 2 -2 2 -2 2 -2 2 -2 4 -4 4 -4 -4 -4 4 4 -4 4 4 -4
(X2, Γ2)2 2 -2 2 -2 2 -2 2 -2 -4 4 -4 4 -4 -4 4 4 4 -4 -4 4
(X3, Γ0)1 2 -2 -2 2 2 -2 -2 2 4 -4 -4 4 4 -4 -4 4 4 4 -4 -4
(X3, Γ0)2 2 -2 -2 2 2 -2 -2 2 -4 4 4 -4 -4 4 4 -4 4 4 -4 -4
(X3, Γ2)1 2 -2 -2 2 2 -2 -2 2 4 -4 -4 4 -4 4 4 -4 -4 -4 4 4
(X3, Γ2)2 2 -2 -2 2 2 -2 -2 2 -4 4 4 -4 4 -4 -4 4 -4 -4 4 4

Table 3.3: The broken S-matrix as measured in the (e, 1) vacuum, where the
cloumns and rows of zeroes corresponding to the confined fields are left out.
Identifying identical columns and rows we obtain the familiar S-matrix of the
D(Z2 ⊗Z2) theory.

• (X3, Γ2)2 ≡ ∆(X3,Γ2)∆(e,J3) with {xiσ3 = e, x−iσ3 = iσ1}.

(X1, Γ0) vacuum

• (Xi, Γ0)1 ≡ ∆(Xi ,Γ0).

• (X1, Γ0)2 ≡ ∆(X1,Γ0)∆(e,J1).

• (X2, Γ2)1 ≡ ∆(X2,Γ2) with {xiσ2 = e, x−iσ2 = iσ1}.

• (X3, Γ2)1 ≡ ∆(X3,Γ2) with {xiσ3 = e, x−iσ3 = iσ1}.
We see that in Table 3.3 the columns (rows) for the sectors (e, α) and (e, α)

for α = 1, J1, J2, J3 are identical and thus that the corresponding fields have to
be identified. This leaves us with 16 sectors for the broken U theory. Summing
the entries as prescribed by formula (3.5.2) yields exactly the S-matrix of the
D(Z2 ⊗Z2) theory, which is given in Table 3.4.

In Table 3.5 we have listed the result for broken S-matrix in the (X1, Γ0)
vacuum. here we have to identify the sectors (e, 1), (e, 1) and (X1, Γ0)1, the
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(e, 1) (++,++) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(e, J1) (++,+−) 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
(e, J2) (++,−+) 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1
(e, J3) (++,−−) 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1

(X1, Γ0)1 (−+,++) 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 1 -1
(X1, Γ0)2 (−+,+−) 1 1 -1 -1 1 1 -1 -1 -1 1 -1 1 -1 1 -1 1
(X1, Γ2)1 (−+,−+) 1 1 -1 -1 -1 -1 1 1 1 -1 1 -1 -1 1 -1 1
(X1, Γ2)2 (−+,−−) 1 1 -1 -1 -1 -1 1 1 -1 1 -1 1 1 -1 1 -1
(X2, Γ0)1 (+−,++) 1 -1 1 -1 1 -1 1 -1 1 1 -1 -1 1 -1 -1 1
(X2, Γ0)2 (+−,−+) 1 -1 1 -1 -1 1 -1 1 1 1 -1 -1 -1 1 1 -1
(X2, Γ2)1 (+−,+−) 1 -1 1 -1 1 -1 1 -1 -1 -1 1 1 -1 1 1 -1
(X2, Γ2)2 (+−,−−) 1 -1 1 -1 -1 1 -1 1 -1 -1 1 1 1 -1 -1 1
(X3, Γ0)1 (−−,++) 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 1 -1 -1
(X3, Γ0)2 (−−,−−) 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 1 -1 -1
(X3, Γ2)1 (−−,+−) 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 -1 1 1
(X3, Γ2)2 (−−,−+) 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 1 1

Table 3.4: The S-matrix of the U = D(Z2 ⊗Z2) theory (up to normalisation
factor of 1/DU = 1/4) as obtained from the broken S-matrix measured in the
(e, 1) vacuum, after leaving out the rows and columns with only zeroes of the
confined fields and after identifying identical rows and columns.

sectors (e, J1), (e, J1) and (X1, Γ0)2, the sectors (X2, Γ0)1 and (X3, Γ0)1, and the
sectors (X2, Γ2)1 and (X3, Γ2)1. These results are all fully consistent with the
algebraic analysis presented in Section 3.4.

Let us illustrate the method by calculating a few sample S-matrix elements
in the (X1, Γ0) condensed vacuum. The U theory should be D(Z2); let us first
calculate the S(+,+)(+,+) element, the (+,+) sector being the new vacuum

S(+,+)(+,+) =
1
q

{〈
S(e,1)(e,1)

〉
Φ
+
〈

S(e,1)(e,1)

〉
Φ
+
〈

S(e,1)(X1,Γ0)

〉
Φ
+

〈
S(e,1)(e,1)

〉
Φ
+
〈

S(e,1)(e,1)

〉
Φ
+
〈

S(e,1)(X1,Γ0)

〉
Φ
+

〈
S(X1,Γ0)(e,1)

〉
Φ
+
〈

S(X1,Γ0)(e,1)

〉
Φ
+
〈

S(X1,Γ0)(X1,Γ0)

〉
Φ

}
=

1
4

1
8
(1 + 1 + 2 + 1 + 1 + 2 + 2 + 2 + 4) =

1
2

,

in agreement with Table 3.6. The contributions to the above matrix element
would be equal if we had used the S-matrix elements as measured in the
trivial vacuum.

To appreciate the importance of the measurements in the broken vacuum,
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(X1, Γ0)1 2 2 2 2 4 4 4 4 4 4
(X1, Γ0)2 2 2 2 2 4 4 -4 -4 -4 -4
(X2, Γ0)1 2 -2 2 -2 4 -4 4 -4 4 -4
(X2, Γ2)1 2 -2 2 -2 4 -4 -4 4 -4 4
(X3, Γ0)1 2 -2 2 -2 4 -4 4 -4 4 -4
(X3, Γ2)1 2 -2 2 -2 4 -4 -4 4 -4 4

Table 3.5: The broken S-matrix for the D(D2) theory as measured in the
(X1, Γ0) vacuum.
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) 1

(X
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) 1

(e, 1) (+,+) 1 1 1 1
(e, J1) (+,−) 1 1 -1 -1

(X2, Γ0)1 (−,+) 1 -1 1 -1
(X2, Γ2)1 (−,−) 1 -1 -1 1

Table 3.6: The modular S-matrix for the D(Z2) theory (up to normalisation
factor 1/DU = 1/2)

consider the matrix element S(−,+)(−,−). The parents of the (−,+) sector are
(X2, Γ0)1 and (X3, Γ0)1 and those of the (−,−) are (X2, Γ2)1 and (X3, Γ2)1.

S(−,+)(−,−) =
1
q

{〈
S(X2,Γ0)1(X2,Γ2)1

〉
Φ
+
〈

S(X2,Γ0)1(X3,Γ2)1

〉
Φ
+

〈
S(X3,Γ0)1(X2,Γ2)1

〉
Φ
+
〈

S(X3,Γ0)1(X3,Γ2)1

〉
Φ

}
=

1
4

1
8
((−4) + (−4) + (−4) + (−4)) = −1

2
,

We see that after completing the calculation along this line we obtain the S-
matrix of the D(Z2) theory, as given in Table 3.6. Note that if we had used the
S-matrix of the unbroken theory, the S(X2,Γ0)(X3,Γ2) and S(X3,Γ0)(X2,Γ2) would
have been zero.
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3.6 Summary

• We have defined gauge invariant actions for DGTs on a spacetime
lattice featuring coupling constants that lead to a rich phase dia-
gram. By tuning these coupling constants one can realize the differ-
ent magnetic flux condensates contained in the theory.

• We have established the order of various phase transitions in the
theory, demonstrating the strength of the Euclidean approach com-
bined with Monte Carlo techniques.

• We have defined gauge invariant operators that are in one-to-one
correspondence with the different particle sectors in a DGT. We have
shown that they can be measured by Monte Carlo simulations.

• We have shown that by measuring a Hopf link of two loop operators
in the vacuum without Bose condensation one recovers the modular
S-matrix of the DGT. Measurement of the same object in symmetry
broken vacua returns the “broken S-matrix", which contains a con-
tribution of the “vacuum exchange diagram". This broken S-matrix
can be used to reconstruct the S-matrix of the effective theory in the
symmetry broken vacuum.

• This program is performed in full for the DGT based on the group
D2.
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3.7 Fusion rules for D(D2) DGT

(e, Ji) ×(e, Ji) = (e, 1)
(e, Ji) ×(e, Jj) = (e, Jk)
(e, Ji) ×(e, χ) = (e, χ)
(e, χ) ×(e, χ) = (e, 1) + ∑ (e, Ji)
(e, 1) ×(e, Ji) = (e, Ji)
(e, 1) ×(e, χ) = (e, χ)
(e, Ji) ×(Xi, Γ0,2) = (Xi, Γ0,2)
(e, Ji) ×(Xj, Γ0,2) = (Xj, Γ2,0)
(e, χ) ×(Xi, Γ0) = (Xi, Γ1) + (Xi, Γ3)
(e, 1) ×(e, 1) = (e, 1)
(e, 1) ×(Xi, Γ0,2) = (Xi, Γ0,2)
(e, 1) ×(Xi, Γ1,3) = (Xi, Γ3,1)
(e, Ji) ×(Xi, Γ1,3) = (Xi, Γ1,3)
(e, Ji) ×(Xj, Γ1,3) = (Xj, Γ3,1)
(e, χ) ×(Xi, Γ1,3) = (Xi, Γ0) + (Xi, Γ2)
(Xi, Γ0,2)×(Xi, Γ0,2) = (e, 1) + (e, 1) + (e, Ji) + (e, Ji)
(Xi, Γ0) ×(Xi, Γ2) = (e, Jj) + (e, Jj) + (e, Jk) + (e, Jk)
(Xi, Γ0,2)×(Xj, Γ0,2) = (Xi, Γ2,0) × (Xj, Γ0,2) = (Xk, Γ0) + (Xk, Γ2)
(Xi, Γ0,2)×(Xi, Γ1,3) = (Xi, Γ2,0) × (Xi, Γ1,3) = (e, χ) + (e, χ)
(Xi, Γ0,2)×(Xj, Γ1,3) = (Xi, Γ2,0) × (Xj, Γ1,3) = (Xk, Γ1) + (Xk, Γ3)
(Xi, Γ1,3)×(Xi, Γ1,3) = (e, 1) + (e, Ji) + (e, Jj) + (e, Jk)
(Xi, Γ1) ×(Xi, Γ3) = (e, 1) + (e, Ji) + (e, Jj) + (e, Jk)
(Xi, Γ1,3)×(Xj, Γ1,3) = (Xi, Γ3,1) × (Xj, Γ1,3) = (Xk, Γ0) + (Xk, Γ2)



CHAPTER 4

The quantum Hall effect and spin textures

This chapter is based on the following publications:

• J. C. Romers, L. Huijse, and K. Schoutens. Charged spin textures
over the Moore-Read quantum Hall state. New Journal of Physics,
13(4):045013, 2011, arXiv:1010.0897 [cond-mat]

• J. C. Romers and K. Schoutens. Spin texture readout of a
Moore-Read topological quantum register. Phys. Rev. Lett., 2012,
arXiv:1111.6032 [cond-mat]

4.1 Quantum Hall physics

4.1.1 Integer quantum Hall effect

We now turn to another example of topological order, the quantum Hall state
of matter. In 1980, Von Klitzing experimentally discovered the quantum Hall
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effect (qHe) [56]. The classical Hall effect, i.e. the fact that a 2DEG in a mag-
netic field conducts current in a direction perpendicular to the applied voltage,
was found to have a quantized relative that appeared in the regime of very
strong magnetic fields.

In this regime, the longitudinal and Hall (transverse) conductance as func-
tions of the magnetic field show very special behaviour: the Hall conduc-
tance develops plateaus centred around particular values of the magnetic field,
whereas the longitudinal conductance vanishes only to reappear at the edge
of a plateau. In terms of the filling fraction ν of the 2DEG

ν =
N
Nφ

,

where N is the number of electrons in the sample and Nφ the number of
magnetic flux quanta, the Hall conductivity σxy was found to be quantized as

σxy = ν
e2

h
,

where e is the electron charge and h is Planck’s constant.

It turns out that to describe the systems with ν an integer (the integer
qH effect, as opposed to ν a fraction, the fractional qH effect) one can ignore
electron-electron interactions and maintain a single particle picture1. The one-
particle eigenstates of the Hamiltonian for a free electron on the plane in a
uniform perpendicular magnetic field

H =
1

2m
(p− e

c
A)2, (4.1)

in the symmetric gauge

A(r) =
1
2

B× r,

1The presence of disorder is important though. One can prove (see for example the excellent
lecture notes by Girvin [13]) that if translational symmetry is unbroken the Hall conductivity is
just a linear function of the magnetic field. In order for plateaus to develop, one needs disorder
to break translational symmetry.
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are, in the lowest Landau level (LLL), given by

ψl(z) = zle−
|z|2
4`B . (4.2)

where `B =
√

h̄c
eB is the magnetic length, z = x + iy and l = 0, . . . , Nφ. All

these states are degenerate in the single-particle picture and the value of l
determines the angular momentum of the state. With these notations in place,
the multiparticle wave function for one completely filled Landau level (ν = 1)
becomes a Slater determinant

ΨiqH(z1, . . . , zN) =

∣∣∣∣∣∣∣∣∣∣

ψ0(z1) ψ1(z1) . . . ψNφ
(z1)

ψ0(z2) ψ1(z2) . . . ψNφ
(z2)

...
...

ψ0(zN) ψ1(zN) . . . ψNφ
(zN)

∣∣∣∣∣∣∣∣∣∣

,

which is a Vandermonde determinant and can be written as

ΨiqH(z1, . . . , zN) = ∏
i<j

(zi − zj) e−
∑k |zk |2

4`B . (4.3)

The exponential part of these expressions depends on the geometry of the
system under consideration (i.e. whether the electrons live on the sphere, the
plane et cetera), whereas the polynomial part is universal. In what follows we
will only be interested in the polynomial part of such wave functions and we
will drop the geometry-dependent exponential.

4.1.2 Fractional quantum Hall effect and the CFT connection

In 1982, Tsui et. al. experimentally observed the existence of stable plateaus
located at fractional Landau level fillings [57]. Very soon after that, Laughlin
[58] proposed a family of wave functions for the plateaus at filling fractions
ν = 1

2m+1 ,

Ψν=1/(2m+1)
L = ∏

i<j
(zi − zj)

2m+1. (4.4)

This equation was arrived at by imposing three demands on the wave func-
tion:
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• The wave function is of a Jastrow form ∏i<j f (zi − zj), and odd under
interchange of two coordinates since the coordinates describe fermions,

• The multi particle wave function is a sum of products of single particle
eigenfunctions (4.2) of the Hamiltonian 4.1,

• It is an eigenstate of total angular momentum, therefore the polynomial
is homogeneous.

Moore and Read [59] realized one could obtain the Laughlin wave func-
tions from a Conformal Field Theory (CFT) construction. On a deep level,
this is due to the fact that effective field theory of the bulk of a quantum
Hall liquid is described by a Chern-Simons (CS) theory and the existence of a
bulk-boundary correspondence between CS theory and CFT [7].

For the ν = 1/3 Laughlin state, let us see how this construction works. It
turns out the CFT doing the job for the Laughlin states is the compactified
boson. We define electron vertex operators2

Vel(z) = ei
√

3ϕ(z),

such that the Operator Product Expansion (OPE) of two electron operators
satisfies

Vel(zi)Vel(zj) = (zi − zj)
3 ei2

√
3ϕ(zj).

An N-particle Laughlin wave function is then obtained by calculating the cor-
relator

〈Vel(z1)Vel(z2) . . . Vel(zN)Vbg〉, (4.5)

where Vbg is an operator inserting background electric charge3 such that the
correlator is charge neutral. The electric charge can be measured with the
operator

Qel =
1

i
√

3
∂

∂ϕ
,

which is normalized such that the electron operator has charge 1.

2All exponents of operators are implicitly normal ordered, meaning we put all creation oper-
ators to the left of the annihilation operators.

3This is a subtle point. Mathematically it is easiest to insert the background compensating
charge at infinity, but if one smears the charge evenly over the whole system, the geometrical
exponential factor is recovered.
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Quasihole operators appear quite naturally in the present setting. Quasi-
holes should not “feel" the electron liquid in their background, i.e. they should
have trivial braiding with the electrons. Mathematically, this translates into
the absence of branch cuts between electrons and quasiholes. The vertex oper-
ator having the lowest integer degree OPE with an electron operator is clearly

Vqh(w) = eiϕ/
√

3(w),

which has Qel eigenvalue 1
3 and OPE

Vqh(wi)Vqh(wj) = (wi − wj)
1
3 ei2ϕ/

√
3(wj),

which establishes the fractional statistics: adiabatically transporting one quasi-
hole around another gives a phase factor of e2πi/3.

4.1.3 Paired quantum Hall states and the colorful construction

In the previous section we have seen that vertex operators of the compact
boson CFT generate wave functions of quantum Hall liquids. This is an
appealing picture, since it is a unified discription in the sense that one can
write down operators for both electronic coordinates and quasihole coordi-
nates. However, if we insist on antisymmetry in the electronic coordinates4,
this construction can only generate wave functions having odd filling fraction
1/(2m + 1).

Since plateaus at other filling fractions have been observed experimentally,
clearly this is not the whole story. Many proposals for wave functions de-
scribing a wider range of filling fractions have been made throughout time,
such as a hierarchy picture [63], a composite fermion picture [64] and taking
particle-hole conjugates5 of certain wave functions [68]. Another route is to

4Electrons are fermions, so the multiparticle wave function should be antisymmetric with
respect to permutations of the electronic coordinates. Later on, we will often use bosonic variants
of such wave functions, for they are easier to study mathematically; the difference is an overall
Vandermonde factor. Bosonic quantum Hall wave functions are however also physically relevant:
rapidly rotating Bose gases are conjectured to form a quantum Hall liquid at very high rotational
frequencies [60, 61, 62].

5Since particle-hole conjugacy takes the filling fraction from ν to 1− ν, clearly something of
interest is going on at ν = 1

2 . The consequences of this have been studied [65, 66] and numerical
studies [67] have concluded the particle-hole conjugate of the Pfaffian is a more likely candidate
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take the CFT picture seriously and construct wave functions by tensoring the
compact boson CFT with some other CFT, which is what we will do now.

We want our construction to have the following properties: (i) electron op-
erators should not have branch cuts in their OPEs, and the final wave function
should be antisymmetric in the electronic coordinates; (ii) electron operators
and quasihole operators should be local with respect to each other: quasi-
holes should not “feel" the electronic condensate; (iii) the multiparticle wave
function should describe a incompressible quantum liquid. These requirements
constrain the set of CFTs that one might consider. The third requirement, in-
compressibility, is subject to a lot of debate. It has been suggested that only
unitary CFTs can generate incompressible states [69], although non-unitary
CFTs have also been studied extensively [70]. Only very recently has a proof
been found that the Ising CFT indeed generates an incompressible state [71],
by generalizing the plasma analogy that exists for the Laughlin states [72].

Ising CFT The particular CFT of interest here is the Ising CFT, which also
describes the Ising model at its phase transition between ordered and disor-
dered phases. The chiral part of this CFT contains three primary fields

1, h1 = 0; σ, hσ =
1
16

; ψ, hψ =
1
2

,

where we denote the conformal dimension of the field α by hα. The OPEs of
these fields are

ψ(z1)ψ(z2) =
1

z1 − z2
, (4.6)

ψ(z1) σ(z2) =
σ

(z1 − z2)1/2 ,

σ(z1) σ(z2) =
1

(z1 − z2)1/8 + ψ(z1 − z2)
3/8.

The third of these OPEs immediately suggests something new is going on
here: the fusion of two σ fields has two possible outcomes. In what follows,
we will dress a compact boson operator with an Ising field to write down
operators for electrons and quasi holes. In particular, the electron will be aug-
mented with a ψ field, whereas the quasihole carries a σ. The wave function

than the Pfaffian for the state at ν = 5
2 .
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of a state containing multiple quasiholes therefore lives in a multidimensional
Hilbert space, and the particular vector in this space depends on the fusion
outcome of each pair of quasiholes.

The electron operator carrying a ψ field having the lowest degree OPE with
another electron operator while maintaining mutual locality and antisymme-
try and the simplest quasihole operator local with respect to the electron op-
erator

Vel(z) = ψei
√

2ϕ(z), Vqh(w) = σeiϕ/
√

2(w), (4.7)

constitute the building blocks of the MR state. If we define the charge of the
electron to be one unit, the operator measuring the charge has to be

Qel =
1

i
√

2
∂

∂ϕ
,

which establishes the charge of the fundamental quasihole as one quarter of
an electron.

Moore-Read wave function Inserting the electron operators (4.7) into a cor-
relator (4.5) gives a quantum Hall ground state

Ψν=1/2
MR = ∏

i<j
(zi − zj)

2Pf
[

1
zi − zj

]
, (4.8)

where the Pfaffian is the antisymmetrized product of pairs of coordinates.
Counting powers, it is straightforward to see that this state has filling fraction
ν = 1

2 . Something remarkable has happend here compared to the Laughlin
states (4.4). Since the addition of one flux quantum always changes the electric
charge in the system by ∆Q = νe, and the electric charge of the fundamen-
tal quasihole in the MR state is e/4, the addition of one flux allows for two
separated quasiholes each carrying half a flux quantum.

Idealized Hamiltonians Numerical studies of the 2D Coulomb Hamiltonian
in a magnetic field (the original article by Laughlin [58] already contained a
numerical analysis of the overlap of the wave function now bearing his name
with the ground state of a Coulomb Hamiltonian) have provided us with am-
ple evidence that the wave functions above are ground states for certain filling
fractions in systems with realistic interactions. However, these Hamiltonians
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are complicated and messy and their study is well out of reach of analytical
methods. More insight can be obtained by studying idealized model Hamil-
tonians (or, equivalently, the clustering properties of the wave functions) that
capture the essence of the states under consideration while staying analyti-
cally tractable.

We start out by considering bosonic quantum Hall wave functions. Since
all these LLL wave functions are analytic polynomials, one can go from an
antisymmetric to a symmetric wave function by dividing out a Vandermonde
factor ∏i<j(zi − zj). Note that this changes the filling fraction: the bosonic
brother of the Laughlin state (4.4) with exponent 3, has exponent 2 and filling
ν = 1

2 and the bosonic variant of the Moore-Read state (4.8) has filling ν = 1.
The bosonic Laughlin state

Ψν=1/2
L = ∏

i<j
(zi − zj)

2 (4.9)

is the densest zero-energy eigenstate of the Hamiltonian

HL = ∑
i<j

δ(zi − zj).

Similarly, the bosonic Moore-Read state

Ψν=1
MR = ∏

i<j
(zi − zj)Pf

[
1

zi − zj

]
(4.10)

is the densest zero-energy eigenstate of the pairing Hamiltonian

Hpair = ∑
i<j<k

δ(zi − zj)δ(zj − zk), (4.11)

which is saying that the wave function should not vanish when two coordi-
nates are put equal whereas it should be identically zero when a third is set
to the same value.

Eq. (4.10) can be cast in another form [73] that is especially suited for our
purposes and is based on the clustering properties captured in the Hamilto-
nian (4.11). We start by dividing the coordinates into two groups

I = {z1, . . . , zN/2}, II = {zN/2+1, . . . , zN},
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and write down the following expression

ΨMR(z1, . . . , zN) = Symm
I, II

[
Ψν= 1

2
L,I Ψν= 1

2
L,II

]
, (4.12)

with a bosonic Laughlin wave function at ν = 1/2, Eq. (4.9), for each group
separately.

The symmetrization step in (4.12) is performed over all possible partitions
of the particles into the groups I and II. The equivalence of (4.10) and (4.12)
can be understood by arguing that both are densest zero-energy eigenstates of
the Hamiltonian (4.11), that this densest zero-energy eigenstate is unique and
that therefore the two wave functions are equal (see [74] for details).

Originally however [73], the equivalence was found using a bosonization
of the Ising⊗ Ising CFT; we explain how this works because we require this
formulation to calculate the wave function of a state with many fused quasi-
holes.

Bosonization The bosonization of the Ising⊗ Ising CFT establishes a map-
ping between the field content of two independent copies of the c = 1/2 Ising
CFT and a c = 1 compactified boson, as shown below.

Ising ⊗ Ising ↔ c = 1 boson
1 ⊗ 1 1
ψ ⊗ 1 1√

2
(eiϕ + e−iϕ)

1 ⊗ ψ 1
i
√

2
(eiϕ − e−iϕ)

σ ⊗ σ 1√
2
(eiϕ/2 + e−iϕ/2)

Let us check how this formulation gives the bosonic MR ground state wave
function (4.10). Up to an overall Vandermonde factor ∏i<j(zj− zj), the bosonized
CFT correlator is the one containing an even number of ψ fields, one at each
of the electron coordinates. In the bosonized description

〈
(

eiϕ + e−iϕ
)
(z1) . . .

(
eiϕ + e−iϕ

)
(zN)〉, (4.13)

only terms in which the number of factors of eiϕ and e−iϕ are equal contribute.
We therefore select N/2 coordinates I = {z1, . . . , zN/2} for which we take
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the positive exponential and take the negative exponential for the other half
II = {zN/2+1, . . . , zN}. This gives a contribution

∏
i<j∈I

(zi − zj) ∏
k<l∈II

(zk − zl) ∏
m∈I,n∈II

(zm − zn)
−1.

Combining this with the overall Vandermonde factor and summing over all
permutations of the particle coordinates, since the partition into groups I and
II was completely arbitrary, we obtain the wave function (4.12).

4.2 Charged Spin Textures in quantum Hall sys-
tems

4.2.1 Skyrmions in the integer quantum Hall effect

Experiments have confirmed that the lowest energy excitations in ν = 1 in-
teger quantum Hall (iqH) systems are charged spin textures. Let us see how
they arise and how their presence is shown experimentally.

0.5 1.0 1.5 2.0
Ν

0.2

0.4

0.6

0.8

1.0

Polarization

Figure 4.1: Polarization around ν = 1 in the non-interacting picture.

Filling Landau levels near ν = 1 Exactly at filling fraction ν = 1, the lowest
Landau level for electrons having their spin aligned with the magnetic field
(we will call this spin up) is completely filled. Now suppose we want to move
away from ν = 1, in the direction of increased density. Let us start by adding
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a single electron to the system. Clearly there are no states available for this
electron in the LLL for up-electrons. Where will it go?

Two energy scales play a role in this problem if we neglect the electron-
electron interactions, which we will do for now. In typical GaAs samples, the
value of the single particle Zeeman splitting is a lot smaller than the Landau
level splitting. This means that in our naive non-interacting picture, the elec-
tron will prefer to flip its spin antiparallel to the magnetic field, rather than
stay aligned with it and jump to the next Landau level. One can repeat this
logic all the way down to ν = 2, where the LLL for both spin species is filled,
leaving no net polarization.

Decreasing the electron density below ν = 1 amounts to removing spin-up
electrons from the LLL, which does not change the polarization. A cartoon
illustrating the above is given in Figure 4.1.

Skyrmions, failure of the single particle picture In Figure 4.2 results from
two different experiments in which the polarization as a function of the filling
fraction around ν = 1 was measured is presented. Both the Nuclear Magnetic
Resonance (NMR) and optical experiments agree with the picture that exactly
at ν = 1, the iqH system is (nearly) fully polarized. However, as one deviates
slightly from filling fraction 1 the polarization drops very rapidly, much more
quickly than the single particle picture illustrated in Figure 4.1 would predict.
The slope of this drop is proportional to the amount of flipped spins and
agrees with Hartree-Fock calculations [77, 78] that presume the formation of
skyrmions. One also expects the size of skyrmions to grow as the g-factor in
the GaAs material is tuned towards zero — something that can be achieved
by changing the external pressure on the sample — and this effect has been
observed in experiments [79, 80].

Skyrmion excitations are well described by wave functions of the form [81]

ψ
(λ)
skyrmion = ψ

(λ)
B ψiqH,

where ψiqH is the ground state wave function for ν = 1, see Eq. (4.3), and ψ
(λ)
B

is a wave function for bosons. These excitations are referred to as skyrmions
because in an effective O(3)-σ-model field theory approach (see Section 1.2,
they correspond to field configurations carrying non-trivial topological charge.
This is measured by the Pontryagin index [82], which is identified with the
electric charge carried by the skyrmion. A typical spin profile (Pontryagin
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FIG. 1. i'Ga NMR spectra of the GaAs/AIGaAs MQW ac-
quired in the dark (7D = 1 sec) for various optical pumping
times ~L, with B = 7.05 T, 0 = 0, and T = 1.55 K. For ease
of comparison, the signals are scaled by the indicated factors,
and are offset for clarity.

with g* ( 0 [13]. The variation of the lowest subband
electron wave function along the growth direction leads
to the asymmetry of the well resonance [14]. We define
the Knight shift to be the peak-to-peak frequency splitting
between the well and barrier resonance lines. The Knight
shift is K, (v, T) = A„(S,(v, T)) for B~~z, where A„ is
the hyperfine coupling constant for nuclei in the center
of the well, and the hyperfine Hamiltonian is 0
g( i=, y, ) hA I S [15].
Figure 2(a) shows the dependence of the 7'Ga Knight

shift K, on the tilt angle 0 for 8 = 7.05 and 9.39 T, at
T = 1.55 K. Assuming that the maximum K, observed at
0 = 28.5 for 8 = 7.05 T corresponds to v = 1, we infer
an electron density n = 1.50 X 10" cm . This density
is used to convert the sample tilt angle 0 to the Landau
level filling factor v. Figure 2(b) is a plot of K, vs v
for 8 = 7.05 and 9.39 T. The striking similarity between
the two data sets in Fig. 2(b) demonstrates the isotropy
of the hyperfine coupling constant (i.e., A = A), which
implies that the Knight shift directly reflects the electron
spin polarization, i.e., Jt, (v(0)) = A(S, (v(0))). The small
discrepancies between the two data sets may be due to the
effects discussed below.
In Fig. 3, two fits to the lt, (v) data for B = 7.05 T at

T = 1.55 K are shown. The functional form of these fits
is obtained by "generalizing" the T = 0 independent elec-
tron model for the spin polarization, which parametrizes
the effect of interactions near v = 1. In this picture,
the lowest spin-split Landau level is completely filled at
v = 1, so the electrons are completely polarized. Reduc-
ing the magnetic field so that v = 1 + e removes a sin-
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gle state from each Landau level, forcing S electrons into
the upper spin-split Landau level, and hence reducing the
electron polarization. Alternatively, increasing the field
so that v = 1 —e adds a single empty state to each Lan-
dau level, forcing A. holes into the lower spin-split Lan-
dau level, which also reduces the polarization if A. ) 1.
If there is electron-hole symmetry, then A. = S. This
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FIG. 3. Dependence of K,. on filling factor v for 8 = 7.05 T
(open circles) at 1.55 K. As explained in the text, both fits
are given by Eq. (1), but the solid line has M = S = I
(noninteracting electrons), while the dashed line has M = S =
3.6 (finite-size Skyrmions).
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FIG. 2. (a) Dependence of "Ga Knight shift K, on the
sample's tilt angle 8 for B = 7.05 (open circles) and 9.39 T
(filled circles) at 1.55 K. (b) Dependence of K, on filling
factor v for B = 7.05 (open circles) and 9.39 T (filled circles)
at 1.55 K. There conversion from 0 to v used n = 1.50 &&

101' crn '

(a) Knight shift as a function of filling fraction as
measured by NMR experiments, taken from Ref.
[75].

absorption takes place to an empty level. As the tempera-
ture increases [see the 1.6 K data in Fig. 2(a)] the sharp
transition to zero absorption to LZ at ! ¼ 1 is no longer
observed. In addition, the changes of the integrated inten-
sity characteristic for ! ¼ 2=3 are no longer visible as one
could expect for fractional states.

Absorption measurements give direct access to the spin
polarization of the two-dimensional electron gas (2DEG).
The optical dichroism can be calculated directly from the
absorption and reflectivity measurements [8,13,22]. It is,
however, important to distinguish between the charged and
neutral exciton absorption lines in the spectra [23]. A
weaker absorption to the neutral exciton can be observed
for lower carrier densities. For the charged exciton line, the
optical dichroism, ðI"# # I"þÞ=ðI"# þ I"þÞ, is exactly
equal to the spin polarization of the 2DEG [23]. We have
calculated the optical dichroism from the data presented in
Figs. 2(a) and 2(b). The results are shown in Figs. 2(c) and
2(d), respectively. At low temperature the optical dichro-
ism (spin polarization) measured either for constant den-
sity of electrons or constant magnetic field is very similar.
First of all, neglecting the sharp feature at ! ¼ 1, the data

are symmetric around ! ¼ 1. Notably, well developed
minimum at ! ¼ 2=3 and ! ¼ 4=3 are seen. This symme-
try, previously reported both in transport [24] and reflec-
tivity [13] measurements, was discussed in terms of
particle-hole symmetry; unoccupied states in the n ¼ 0
LL for filling factors 1< !< 2 can be treated as holes
with an effective filling factor !h ¼ 2# !e.
The measured polarization at T ¼ 1:6 K is comparable

to previous absorption and reflectivity measurements
[8,13]. The spin polarization saturates at approximately
0.8, and the depolarization on both sides of ! ¼ 1 is
roughly symmetric and compatible with the formation of
spin textures (Skyrmions or anti-Skyrmions) in the ground
state of size S & A & 3 [dashed lines in Fig. 2(c)], as
previously reported for samples of similar density [8]. At
fractional filling factors ! ¼ 2=3 and 4=3, and mK tem-
peratures, the polarization shows minima, although the
system never fully depolarizes (or polarizes), in contrast
to the expectation for integer composite Fermion filling
factors, but predicted theoretically from numerical studies
of finite size systems [25]. What is new in our data is that at
very low temperature (T ¼ 40 mK) the system does in-

FIG. 2 (color online). Integrated intensity (I"' ) of the absorption to the n ¼ 0 LL measured for both "þ and "# polarizations as a
function of filling factor for (a) a constant density of electrons ne ¼ 1:67( 1011 cm#2 and (b) a constant magnetic field B ¼ 11 T. (c),
(d) Optical dichroism (spin polarization) calculated using the data presented in (a) and (b). The calculated depolarization for finite size
Skyrmions or anti-Skyrmions is shown by the dashed lines (A ¼ S ¼ 3) and the dotted lines (A ¼ S ¼ 15). (e) Shows the spin
polarization around filling factor ! ¼ 1measured at T ¼ 40, 500 mK, and 1.6 K. (f) Shows the detailed temperature dependence of the
spin polarization at exactly ! ¼ 1 (the solid line is drawn as a guide to the eye). The broken lines are the predicted temperature
dependence of the polarization for a spin wave excitation (dash-dotted line) and for two spin levels separated by the single particle
Zeeman energy (dashed line) as described in the text.

PRL 102, 126806 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

27 MARCH 2009

126806-3

(b) Optical dichroism as
a function of filling frac-
tion as measured by op-
tical absorption experi-
ments, taken from Ref.
[76].

Figure 4.2: Knight shift and optical dichroism, both measures for the spin
polarization, around ν = 1 as measured in experiments.

index +1, charge +e skyrmion) reads

S(r, φ) = (
√

1− σ2 cos φ,−
√

1− σ2 sin φ, σ), (4.14)

where σ(r) is some function that smoothly goes from −1 at the origin to +1
at infinity.

CSTs in the MR state: numerics The paper [21], see also [83, 84], took up
the study of spin-full excitations over the MR state, stressing that the results
may shed light on some of the experimental findings regarding the spin-
polarization at ν = 5/2. A particular suggestion is that specific experimental
probes aimed at detecting a spin-polarization at ν = 5/2 [85] may excite spin-
full excitations, thereby depolarizing the system. The authors of [21] report
an extensive numerical study of up to N = 20 particles in spherical geometry,
where angular momentum (L) and total spin (S) are good quantum numbers.

They identified low-lying states on the diagonal L = S as well as spin-
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TABLE I: Squared overlaps of the trial skyrmion states
Ψsky and Ψ′

sky and their Pfaffian parents ΦMR with the exact
Coulomb ground states (unpolarized Ψ2 and polarized Φ3) for
N = 10 electrons and layer widths w = 0 and 3λ.

w/λ | 〈Ψsky|Ψ2〉 |2 |
˙

Ψ′
sky|Ψ2

¸

|2 | 〈ΦMR|Φ3〉 |2

0 0.51(3) 0.5186 0.7016

3 0.71(1) 0.7394 0.8310

we extend this idea to a polarized parent at ν = 5/2, in
the following chosen to be the Moore–Read state ΦMR

[26]. The skyrmion state Ψsky is constructed from Φ by
attaching a unique spin-texture. The expression in the
spherical coordinates ui and vi [21] is fairly simple

Ψsky({ui, vi}) = P
[
Φ({ui, vi}) ×

(
ui

vi

)]
. (1)

Before projection P onto the global singlet S = 0, this
state describes a radial spin-texture and (like at ν = 1)
combines eigenstates with different L = S. The squared
overlaps of Ψsky with the unpolarized Coulomb ground
state Ψ2 were calculated in a standard way [22]. The
values for Ψsky derived from ΦMR are given in Table I.

We have also constructed an alternative trial skyrmion
state Ψ′

sky, as the ground state of a model Hamiltonian
Hsky = V0(0) + W3/2(3) + εV0(2), where ε " 1, and
VS(m) and WS(m) are the pair and triplet pseudopoten-
tials. The resulting state, Ψ′

sky, is essentially the same as
Ψsky defined above (squared overlap of 0.96 for N = 12).
By tracing the successive action of each term we found
that the (moderate) overlaps with Ψ2 are largely lost at
the stage of enforcing triplet correlations. This reflects
the fact that the Pfaffian ΦMR is not a very accurate
description of the Coulomb ground state Φ3 [6, 8], here
acting as the skyrmion’s parent. Indeed a comparison
(Table I) of the overlaps of Ψ′

sky or Ψsky with the ex-
act Coulomb skyrmion state shows that the reduction in
total overlap is comparable to that between ΦMR and Φ3.

We have also examined the partially polarized spectra
at σ = 4, 2, 0, −2. Finite skyrmions of size K ≤ N/2
on the sphere have L = S = N/2 − K [19]. As shown on
a few examples in Fig. 2(b), the plots of single-particle
charge and spin-flip densities ($ = $↑ +$↓ and γ = $↓/$)
calculated in the lowest Coulomb states at Lz = L =
Sz = S = 1, 2, . . . indeed reveal accumulation of charge
2q and spin K over a finite area ∝ K around a pole.

We now turn to study the competition between the fi-
nite skyrmions and the spinless QPs. The analogy with
ν = 1 or 1/3 fails, as skyrmions at ν = 5/2 carry two
charge quanta (2q = e/2), which allows their sponta-
neous break-up into pairs of repelling QPs. In order to
resolve the issue of stability, we have carefully compared
the skyrmion and 2QP energies, including the electro-
static corrections [17] to compensate for finite-size effects
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FIG. 3: (color online) (a) Dependence of energy E (counted
from Esky at S = 0) on spin S, for N = 12 electrons at flux
Nφ = 20 and 22. Solid and dashed lines connect the ground
states and the lowest L = S states at each S. The ener-
gies include electrostatic corrections defined in the text. (b)
Phase diagram in the plane of Zeeman energy EZ and lateral
harmonic confinement h̄ω, showing transitions between var-
ious states: two e/4-charged quasiholes (QHs); two charged
spin-textures (CSTs); or one skyrmion (L = S).

due to different spatial extent of the involved carriers.
(At S = 0, there is no correction as the charge distribu-
tion is uniform; at S = N/2 we assume, as standard, a
concentrated charge; a cubic interpolation is applied.)

As illustrated in Fig. 3(a) for N = 12 and w = 3λ,
the skyrmion/anti-skyrmion asymmetry is very strong
at ν = 5/2. In agreement with Fig.1, large skyrmions
are energetically favoured over the QHs, but large anti-
skyrmions have higher energy than the QEs. As ex-
pected, the finite skyrmions characterized by L = S are
no longer the lowest states when spin polarization be-
comes too high. The emergence of lower-energy states
at K <∼ N/4 signals the break-up of a skyrmion into
two separate objects (whose counter-aligned angular mo-
menta give rise to the observed oscillation between L = 0
and 1). At full polarization, the two objects are Moore–
Read QHs; below that, they are q-charged spin-textures
(CSTs) formed around the individual QHs [23, 27].

For a clean (disorder-free) sample, we find that, while
the ν = 5/2 ground state remains polarized at EZ = 0,
the nature of its charged excitations (in sufficiently wide
wells) depends on EZ. For large EZ the activation gap
is set by the energy of a single (polarized) QE-QH pair.
For small EZ, these are replaced by CSTs. The minimal
activation gap is never expected to involve a skyrmion,
as this requires creation also of two −e/4 QEs (or CSTs).

Skyrmions can become relevant in a clean sample when
dilute QHs are introduced into the ground state by tuning
to ν < 5/2. From Fig.3(b), dilute QHs will convert to
CSTs for EZ

<∼ 0.01 e2/λ and then pair up into finite-
sized skyrmions for EZ

<∼ 0.003 e2/λ. At ν > 5/2, dilute
QEs may convert into CSTs at small EZ; however they
are not expected to bind into anti-skyrmions. Since the
skyrmion is formed by binding two QHs, its stability may
be enhanced by a non-zero QH concentration. Thus, with

Figure 4.3: Phase diagram of exact diagonalization studies of the Coulomb
Hamiltonian in a magnetic field for spinful electrons for one excess flux quan-
tum above the ν = 5/2 state. The horizontal (vertical) axis represents the
Zeeman energy (lateral harmonic confinement energy). The lowest-energy
state for each point in this plane is calculated and three different regimes have
been identified: two polarized quasiholes, two Charged Spin Textures and one
skyrmion. Figure taken from Ref. [21].

full ground states with L = 0 or L = 1. The L = S states are associated with
charge 2q = e/2 skyrmions. The L = S = 0 state in particular is well described
by a product state of the form ψskyrmion = ψ

(L=S=0)
B ψMR. The spin-full states

with L = 0(1) are naturally interpreted as being built from spatially separated
charge q CSTs. The paper [21] presents a phase diagram, see Figure 4.3, spec-
ifying the nature of the spin-full excitations (skyrmions vs. separated CSTs)
as a function of the Zeeman splitting and the lateral harmonic confinement
strength, which is used to model disorder.

4.2.2 Construction of CST wave functions over the MR state

Here we follow a purely algebraic approach to obtain explicit expression for
a variety of CSTs over the MR state. It rests on two observations. The first
is explained above, culminating in Eq. (4.12), namely that the MR state can
be written as a symmetrized product of two Laughlins. In the discussion
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below we use the bosonic wave functions and denote the fundamental quasi-
hole charge by q (the fermionic MR state would have q = e/4, the bosonic
counterparts discussed here have q = e/2). The second observation [81] is
that in the lowest Landau Level (LLL), the most general wavefunction for N
spin-full fermions in N + 1 available 1-particle orbitals that vanishes when
two particles are placed at the same position6 factorizes as ψBψiqH, where ψB
describes N spin-1/2 bosons in two orbitals. These orbitals can be viewed
as the Lz = ±1/2 components of a L = 1/2 doublet of angular momentum.
The combined orbital and spin angular momenta give rise to an SU(4) sym-
metry, with the four 1-particle states (L = S = 1/2) corresponding to the
fundamental (vector) representation, with Dynkin labels [1 0 0] 7.

This SU(4) algebra (for a similar problem containing an SU(3) algebra, see
Ref. [87]) is represented by operators of the form

Tαβ =
1
2
{a†

α, aβ}, α, β ∈ {↑ (+1
2
), ↑ (−1

2
), ↓ (+1

2
), ↓ (−1

2
)},

which gives a total of 4× 4 = 16 operators. They have commutation relations

[Tαβ, Tµν] = δβµTαν − δανTµβ.

The total number of bosons N in the four states is conserved, which means
the operator

∑
α

Tαα = ∑
α

(a†
αaα +

1
2
) = N + 2

commutes with everything else and is, up to a constant shift, proportional
to the quadratic Casimir operator. The fifteen remaining operators span the
SU(4) algebra. The number of ways one can put N bosons in four boxes,

(N + 3)!
N!3!

=
(N + 3)(N + 2)(N + 1)

6
,

6The Pauli principle only dictates that the wave function should vanish when two particles of
identical spin are placed at the same position. The restriction to states that have the additional
property that they vanish when two particles of opposite spin are placed at the same position
makes the whole construction far more transparent. The price to pay is that not all possible states
are reachable by this construction.

7For an excellent review on the theory of Lie groups, see [86]. This work also contains lists of
irreducible representations of groups that arise in physical systems.
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gives the dimensionality of the [N 0 0] irrep of SU(4). The partition sum for
N such bosons becomes

ZB = SU(4) irrep [N 0 0]

=
N/2

∑
K=0

(L = N/2− K, S = N/2− K) . (4.15)

For large N the highest weight states (HW) of each of the (L = S = N/2− K)
multiplets simplify to become

|ψK
B 〉 = HW (L = S = N/2− K)→ |↓K, ↑N−K〉,

with the left (right) position in the ket corresponding to the Lz = −1/2 (+1/2)
orbital.

The expression for a size-λ skyrmion in the disc geometry is then obtained
as a weighted sum over these states [88, 81],
(

∑
K

λKψK
B

)
ψiqH =

(
|0, ↑N〉+ λ| ↓, ↑N−1〉+ · · ·+ λN | ↓N , 0〉

)
∏
i<j

(zi − zj)

= ∏
i<j

(zi − zj)∏
l
(zl | ↑〉l + λ| ↓〉l) e−

|zl |2
4 , (4.16)

leading to the spin texture eq. (4.14).

The bosonic MR state is uniquely characterized as the highest density LLL
state that is annihilated by the pairing Hamiltonian (see the discussion sur-
rounding Eq. (4.11))

Hpair = ∑
i<j<k

δ(zi − zj)δ(zj − zk).

We restrict ourselves to states that satisfy the very same MR pairing condi-
tion Hpairψ = 0. For spin-1/2 bosons, the highest density state with this “MR
pairing" property is the non-Abelian spin singlet (NASS) state [89] with fill-
ing fraction ν = 4/3. In spherical geometry, the NASS state is realized for
NNASS

φ = 3/4N − 2 flux quanta. The total space of paired states for Nφ in the
vicinity of NMR

φ = N − 2 can be understood through counting formulas for
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Nφ=1 S=0
L=0 1

Nφ=2 S=0 S=1 S=2
L=0 1 0 1
L=1 0 1 0
L=2 1 0 0

Nφ=3 S=0 S=1 S=2
L=0 1 0 1
L=1 0 2 0
L=2 2 1 1
L=3 0 1 0
L=4 1 0 0

Table 4.1: Multiplicities of (L, S) multiplets in state space for N = 4 bosonic
spin-1/2 particles on the sphere, subjected to MR pairing condition and in the
presence of flux Nφ. The L = S = 0 state at Nφ = 1 is the bosonic NASS state,
the state with L = 0, S = 2 at Nφ = 2 is the bosonic MR state.

spin-full quasiholes over the NASS state [90]. In table 4.1 we list the dimen-
sions of each of the (L, S) subspaces for N = 4 particles for Nφ = NNASS

φ = 1,
Nφ = NMR

φ = 2, Nφ = NMR
φ + 1 = 3.

The idea is now to extend the trial states Eq. (4.12) to the spin-full case,
by including factors of type ψB separately in both group I and group II. All
states generated in this way satisfy the pairing property. They constitute a
subset of all paired states at Nφ = NMR

φ + 1 as listed in table 4.1.
We first analyze the symmetric product of the states ψB for groups I and

II. In SU(4) group theory

ZI,II
B = [N/2 0 0]⊗sym [N/2 0 0] =

N/4

∑
l=0

[N − 4l 2l 0] .

For N = 4, the l = 0 contribution has (L, S) = (2, 2), (1, 1) and (0, 0), totaling
35 states, while the l = 1 term comprises (L, S) = (2, 0), (1, 1), (0, 2), (0, 0),
totaling 20 states. For general N, l, the representation [N − 4l 2l 0] contains
fully polarized states (S = N/2) at L = N/2− 2l. Note that if we were to fully
symmetrize over all N particle coordinates, only the l = 0 term would survive,
reducing the construction to the states |ψK

B 〉 describing the iqH skyrmion.
However we first perform what we call the Lowest-Landau-Level lift of ψB

ψB → ψB ({xi∈I∪II}) ψL
I
(
{xj∈I}

)
ψL

II ({xk∈II}) ,

where the sets of coordinates {xi} contain both the up-spins zi and down-
spins wi. The polynomial ψB is then symmetric with respect to exchanging zi
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and zj if i, j are in the same group, and similarly for the down spin coordinates;
we require no further symmetries. If we only then symmetrize over all N
particles, we keep a much bigger set of spin-full states satisfying the pairing
condition. In general, states obtained for 2 orbitals lift to independent states
at Nφ = N − 1. One exception is (L, S) = (0, 0) at N = 4, where the LLL-lifts
from the l = 0, 1 multiplets coincide.

We now argue that the states that survive after the symmetrization step
with l > 0 can be viewed as charge q(=e/2 for these bosonic wave functions)
CST separated by a distance set by l, where l = N/4 corresponds to the
situation that two q CST sit on opposite poles of the sphere. This is most
easily seen by focussing on the fully polarized (S = N/2) states, where the
expressions can be compared to explicit formulas describing spin-less charge q
quasiholes. The states (in disc geometry) for N paired, spin-polarized bosons
at Nφ = N − 1 are obtained by expanding the 2-quasihole wavefunction

Symm
I, II

∏
i∈I

(η1 − zi) ∏
i<j∈I

(zi − zj)
2 ∏

k∈II
(η2 − zk) ∏

k<l∈II
(zk − zl)

2

on a basis of symmetric polynomials in η1, η2, where the powers of the ηs
indicate the location of the two quasiholes. On the sphere, the resulting angu-
lar momenta are (for N a multiple of 4) L = N/2, N/2− 2, . . . , 0. To leading
order in 1/N, the state at L = 0 corresponds to ηN/2

1 η0
2 + η0

1ηN/2
2 indicating

that indeed the two quasiholes are on opposite sides of the sphere. For the
spin-full case, one similarly finds that 2-CST states with L� N/2 correspond
to well-separated CSTs.

For working towards explicit expressions, it is most convenient to perform
the LLL lift and subsequent symmetrization in second quantization. Within
each group, the LLL lift amounts to an embedding of a state defined on 2
orbitals to one on N orbitals, with coefficients set by the expansion of the
corresponding Laughlin factor. It has the important property that both L and
S quantum numbers are preserved. For the simple example of the 2-particle,
polarized ν = 1/2 Laughlin state (corresponding to one of the groups I, II for
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N = 4 particles and Nφ = 3 flux quanta) the LLL-lift takes the form

| ↑2, 0〉 → 2
√

6| ↑, 0, ↑, 0〉 − 4|0, ↑2, 0, 0〉
| ↑, ↑〉 → 6| ↑, 0, 0, ↑〉 − 2|0, ↑, ↑, 0〉 (4.17)

|0, ↑2〉 → 2
√

6|0, ↑, 0, ↑〉 − 4|0, 0, ↑2, 0〉 .

We will work out the second line above as an example. In first quantization
this state corresponds to the lift of (z1 + z2):

(z1 + z2)(z1 − z2)
2 = (z3

1 + z3
2)− (z1z2

2 + z2
1z2), (4.18)

where we have expanded on a basis of symmetric monomials. When go-
ing from first to second quantization on the sphere, particles in orbital l =

0, . . . , Nφ obtain an additional factor
√

l!
√
(Nφ − l)!, giving

(z3
1 + z3

2) →
√

6
√

6| ↑, 0, 0, ↑〉
(z1z2

2 + z2
1z2) →

√
2
√

2|0, ↑, ↑, 0〉,

which leads to (4.17) after we plug in the relative coefficients found in the
expansion (4.18). The symmetrization over groups I and II is easily done
through the step

| . . . , mI , . . .〉 ×s | . . . , mII , . . .〉 →
√

(mI + mII)!
mI ! mII !

| . . . , mI + mII , . . .〉, (4.19)

where mI , mII indicate the occupation number of a given orbital (including its
spin-label).

As an explicit example, we present the two L = S = 1 states for N = 4
particles with Nφ = 3. In the first step we identify the L = S = 1 highest
weight states within the two distinct SU(4) multiplets with Dynkin labels
[4 0 0] and [0 2 0],

ψ
[4 0 0]
B ∝ [

√
2| ↑, ↑⇑⇓〉+ | ↑, ↓⇑2〉 − 3| ↓, ↑⇑2〉] + [I ↔ II]

ψ
[0 2 0]
B ∝ [−

√
2| ↑, ↑⇑⇓〉+ 2| ↑, ↓⇑2〉] + [I ↔ II] (4.20)
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where we use single (double) arrows for indicating the particles in group I
(II). In the second step we perform the LLL-lift and then symmetrize, leading
to

ψ[4 0 0] ∝ 5|0, ↓, ↑3, 0〉 − 3
√

2|0, ↑↓, ↑, ↑〉

+7|0, ↑2, ↓, ↑〉 − 5
3

√
3|0, ↑, ↑2↓, 0〉 − |0, ↑2, ↑, ↓〉

−
√

3| ↓, 0, ↑2, ↑〉+ 3| ↓, ↑, 0, ↑2〉 −
√

6| ↑, 0, ↑↓, ↑〉
+3
√

3| ↑, 0, ↑2, ↓〉+ 3| ↑, ↓, 0, ↑2〉 − 3
√

2| ↑, ↑, 0, ↑↓〉

ψ[0 2 0] ∝ 4|0, ↓, ↑3, 0〉 − 3
2

√
2|0, ↑↓, ↑, ↑〉

+2|0, ↑2, ↓, ↑〉 − 4
3

√
3|0, ↑, ↑2↓, 0〉+ |0, ↑2, ↑, ↓〉

−2
√

3| ↓, 0, ↑2, ↑〉+ 6| ↓, ↑, 0, ↑2〉+
√

6| ↑, 0, ↑↓, ↑〉
−3| ↑, ↓, 0, ↑2〉 −

3
2

√
2| ↑, ↑, 0, ↑↓〉 . (4.21)

We remark, while the construction correctly reproduces two linearly indepen-
dent paired states at L = S = 1, the algebraic structure is not very transparent.
For one thing, the SU(4) symmetry is lost in the LLL-lift. In addition, the two
states eq. (4.21) are not orthogonal.

The (L, S) states constructed here can directly be compared to the numer-
ical ground states found in Ref. [21]. In particular, where [21] finds L = 0, 1
groundstates for N = 12 at S = 4, 5, 6 we expect good overlaps with the states
presented here.

The bosonic parts of the wavefunctions simplify considerably in the large-
N limit: the leading polarized states of the [N 0 0] and [0 N/2 0] irreps are

ψ
[N 0 0]
B → |0, ↑N/2⇑N/2〉, ψ

[0 N/2 0]
B → |↑N/2,⇑N/2〉.

We can then consider states with K overturned spins as in eq. (4.16), sep-
arately in groups I and II. This leads to simple expressions for the situa-
tion where the spin-textures in groups I, II have sizes λI , λII . Starting from
ψ
[0 N/2 0]
B , with group I, II textures on opposite sides of the 2-orbital subspace,

and then taking these expressions through the LLL lift and symmetrization,
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leads to 2-CST configurations where the charge q CSTs sit on opposite sides
of the sphere. This expression, expanded in powers of the sizes λI and λII ,
symbolically reads

∑
KI ,KII

λKI
I λKII

II

(
Symm

I, II

)
(LLL− lift) | ↑N/2−KI⇓KII , ↓KI⇑N/2−KII 〉 . (4.22)

From here on we will label our textures as CST[wI ,wII], where wI , wII are
the winding numbers (with respect to a given location on the sphere) of the
skyrmions that would appear in group I, II if the symmetrization step in our
construction were not performed. The SU(4) label [N 0 0] corresponds to the
CST[1, 1] and [0 N/2 0] gives a spatially separated CST[1, 0] and CST[0, 1].

4.2.3 Properties of CSTs over the MR state

For a given quantum Hall state we measure the components of the spin field
by acting with

S(z, z) = ∑
l,l′

(
a†

l,ασαβal′ ,β

)
φ†

l (z) φl′(z)

where the φl(z) are the single particle wave functions, which depend on the
geometry and our normalization is such that a polarized system has Sz = 1. In
Figure 4.4 we plot the expectation value of the spin vector for a configuration
with N = 8, λI = 1.0, λII = 0.0.

Figure 4.4: Spin components Sx, Sy and Sz for configuration with single
CST[1, 0] at the origin and a quasihole at infinity, after stereographic projec-
tion.

In a Conformal Field Theory (CFT) based description [59], the quasihole
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operator comes with an Ising σ-field. For N even, a collection of these σ-fields
will fuse to the identity operator, whereas they fuse to the ψ sector for N
odd. This is due to the fact that the electron operator carries a ψ field, so
performing the contractions of an odd number of electron operators within
the CFT correlator will always leave one ψ field: this one has to pair with the
fusion product of all the σ-fields in order for the total correlator to fuse to the
identity.

It was shown in [91] that the density profile of the system on the sphere
after the fusion of two charge q quasiholes to a charge 2q quasihole differs
between the two cases: in the case N even the density drops to zero at the
location of the 2q quasihole, whereas the density drop for N odd is wider and
less deep.

This has consequences for the possible spin textures that may arise as a
result of fusing elementary CST[1, 0]. Our construction recovers the polarized
quasihole states in the limit λ → 0. This means we expect the density for
up-particles to vanish in the core of the fusion product of two CST[1, 0] for N
even, but not for N odd.

This becomes rather obvious in the two-layer construction we have been
using throughout this paper. For N even, the particles can be divided equally
into two groups. The KI = KII = 0 term appearing in the expansion of
two quasiholes analogous to (4.22), but now for both quasiholes at the same
position is then

|0, ↑N/2〉 for group I, |0,⇑N/2〉 for group II.

However for N odd we have to divide the particles unequally among the
two groups. The division that requires the least amount of total flux is (N +
1)/2, (N − 1)/2. The Nφ is equal for both groups, and is at least N − 1:
this is the highest power for a single particle appearing in the expansion of
Laughlin factor for the group containing (N + 1)/2 particles 8. Note that the
NMR

φ = N− 2, so that states with an odd number of particles will always have
quasiholes present.

This extra flux in the system gives two extra orbitals to the particles in the
smaller group, whereas the particles in the larger group have no additional

8Note one can also divide the particles unequally in the case N even. This leads to states with
quasiholes: consider the division N/2 + 1, N/2− 1. The particles in the first group require at
least Nφ = N, which means the particles in the second group have four excess fluxes.
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orbitals. The first term in the expansion now becomes

|0, 0, ↑(N−1)/2〉 for group I, |⇑(N+1)/2〉 for group II.

Even without performing the whole calculation one can already see that the
density will not vanish since the particles in group II are spread homoge-
neously over the sphere. The natural texture

∑
K

λK
(

Symm
I, II

)
(LLL− lift) | ↓K, 0, ↑(N−1)/2−K〉|⇑(N+1)/2〉, (4.23)

has winding number 2 for group I and 0 for group II. Therefore we argue that
the simplest possible charge 2q configuration has winding indices [2, 0] for N
odd.

We have studied three representative cases in detail: a skyrmion CST[1, 1]
for N = 8, a separated CST[1, 0]/quasihole pair for N = 8 and a single
CST[2, 0] for N = 7. The results are in Figure 4.5. We have chosen these
cases for the following reasons. The CST[1, 0] is the fundamental charge q spin
texture, associated with the σ-field in the Ising CFT. The skyrmion CST[1, 1]
is given because it shows that our construction includes the results of earlier
studies [81]. It is also the fusion product, following the discussion above, of
two elementary CST[1, 0] in the trivial (N even) fusion channel. The CST[2, 0]
is the fusion product of two CST[1, 0] when the overall fusion channel (in CFT
language) is ψ or alternatively stated, when the number of particles N is odd.

Two observations about the behaviour of these textures are in place. First
of all we see that the the CST[2, 0] has winding number 2 when the azimuthal
angle runs from 0 to 2π. Furthermore, the (expectation value of the) length
of the spin vector vanishes in the core of the CSTs of type [1, 0] and [2, 0].
For N large the latter effect seems to hold for all CST[n, 0]. This behavior
closely mimicks that of the “polar core vortex" appearing in rotating spin-1
Bose-Einstein condensates [92]. The observation that the MR state carries an
effective spin-1 field due to the pairing of the electrons has been made in
earlier studies [93, 84]. The BEC polar core vortices have the following mean
field spin vector expectation value

S(r, φ) = (
√

2ρ(1− ρ) cos nφ, −
√

2ρ(1− ρ) sin nφ, ρ) ,
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Figure 4.5: Density, S2 and Sz of a N = 8 CST[1, 0]/quasihole pair, an N = 7
CST[2, 0] and an N = 8 skyrmion (CST[1, 1]) at λ = 2.0 as a function of the
polar angle θ at azimuthal angle φ = 0 and Sx for the same systems as a
function of φ at θ = π

2 . The spin textures are centered at θ = π, for the N = 8
CST[1, 0] there is a quasihole at θ = 0.

with ρ(r) equal to 0 at the origin and approaching 1 at infinity. The Pontryagin
density in polar coordinates equals

ρtop(r, φ) =
1

4π

1
r

S ·
(
∂rS× ∂φS

)
,

which for the texture (4.24) means that the integrated Pontryagin density
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equals

Qtop =
∫

d2r ρtop =
∫ ∞

0
dr 2πr

1
4πr

n ρ ∂rρ =

=
n
2

∫ ∞

0
dr

d
dr

(
1
2

ρ2(r)
)
=

n
4

.

Numerical values for our CST[1, 0] textures approach 1
4 for λ � 1. For a

general texture CST[wI , wII ] the integrated Pontryagin density is no longer a
topological index in the usual sense (the target space manifold is R3 instead
of S2, so the integral does not have to be an integer). Also, the relation be-
tween electric and topological charge densities, ρelec = νeρtop, valid in Abelian
quantum Hall states, takes a different form in general non-Abelian states, of
which the MR state is a prototypical example.

4.3 Spin texture read out of a qubit

In the absence of spin, the fundamental charge-q quasihole excitations over
the MR state are known to behave as non-Abelions: the presence of n such ex-
citations leads to a total of 2n/2−1 topologically different states, all degenerate
as long as the excitations are sufficiently separated. In the formalism where
the MR wavefunctions are obtained as conformal blocks in a conformal field
theory (CFT), this degeneracy can be traced to fact that the e/4 quasiparticles
carry a σ field, with Ising fusion rules σ× σ = 1 + ψ. The topological distinc-
tion among the 2n/2−1 internal states of a collection of n quasiholes over the
MR state makes them ideally suited to act as a (topologically protected) quan-
tum register. Quantum gates can be implemented through particle braiding
and readout is in principle possible by bringing the quasiparticles to one loca-
tion and then probing the 1-particle density profile of the resulting composite
excitation.

In this Section we consider the same process of readout through fusion,
but now in the presence of the spin degree of freedom. We thus analyze
the thought-experiment where a collection of n elementary charge q CST are
brought to the same location and fuse into a composite excitation of charge
nq. Focusing on the spin texture carried by the fused, composite excitation, we
will establish a direct connection between the winding numbers characterizing
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the texture and the fusion sector of the underlying non-Abelions. This in
principle enables the readout of a MR quantum register through the detection
of a characteristic spin texture.

Fusion of multiple MR quasiholes Excess flux ∆Nφ over a MR state leads
to n = 2∆Nφ quasiholes. The fusion product of the corresponding σ fields can
result in F ψ-quanta, with 0 ≤ F ≤ ∆Nφ. These ψ quanta will be absorbed
by F unpaired particles in the MR qH condensate. The number F provides
information about the topological state of the system: a determination of F is
equivalent to partially reading out the quantum register spanned by the fusion
space of the quasiholes. If we now bring all quasiholes to the origin, the lowest
surviving field product in the sector with F ψ’s is : ψ(0)∂ψ(0) . . . ∂F−1ψ(0) :,
where the colons denote normal ordering. This leads to the following “big
hole" wave function, expressed in the form of a CFT correlator

Ψbig hole(z1, . . . , zN ; ∆Nφ, F) = ∏
i<j

(zi − zj) . . .

· · ·∏
k

z
∆Nφ

k 〈: ψ(0)∂ψ(0) . . . ∂F−1ψ(0) : ψ(z1) . . . ψ(zN)〉CFT. (4.24)

In [94] Read and Rezayi presented a general analysis of wavefunctions for
quasiholes over the MR state, which they characterized by the same quantity
F, the number of unpaired particles, and a set of integers {m1, . . . , mF}. They
provide the following general expression for the n = 2∆Nφ quasihole states in
the presence of ∆Nφ extra fluxes

Ψm1,...,mF (z1, . . . , zN ; w1, . . . , w2∆Nφ
) =

1
2(N−F)/2(N − F)/2!

∑
σ∈SN

sgnσ
F

∏
k=1

zmk
σ(k)

(N−F)/2

∏
l=1

Φ(zσ(F+2l−1), zσ(F+2l); w1, . . . , w2∆Nφ
)

(zσ(F+2l−1) − zσ(F+2l))
∏
i<j

(zi− zj),

where

Φ(z1, z2; w1, . . . , w2∆Nφ
) =

1
∆Nφ!2 ∑

τ∈S2∆Nφ

∆Nφ

∏
r=1

(z1 − wτ(2r−1))(z2 − wτ(2r)).
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We recognize the equivalence of Eq. (4.24) and a special case of this expres-
sion, namely the one where the set mk has been chosen such that the highest
obtainable value of Lz is reached and all the quasihole coordinates are sent to
the origin. This corresponds to the expression

∏
i<j

(zi − zj)∏
k

z
∆Nφ

k ∑
σ∈SN

sgnσz−1
σ(1) . . . z−F

σ(F) . . .

. . .
1

zσ(F+1) − zσ(F+2)
. . .

1
zσ(N−1) − zσ(N)

, (4.25)

which is easily seen to be equivalent to Eq. (4.24).

In preparing for the introduction of the spin degree of freedom, we wish
to rewrite this “big hole" wavefunction in yet another form by using the
bosonization of the Ising CFT introduced in Section 4.1.3.

To extend the ‘two group’ formula to the ‘big hole’ wave function Eq. (4.24),
we need to bosonize the normal ordered field product : ψ(0)∂ψ(0) . . . ∂F−1ψ(0) :,
which we will do as follows. Let us locate the ψ fields at locations wi and pull
out all derivatives. The desired expression is then precisely the regular part
of

∂w2 ∂2
w3

. . . ∂F−1
wF

(eiϕ + e−iϕ)(w1) . . . (eiϕ + e−iϕ)(wF)

that survives after sending all the wi to zero. Following a similar logic as in
the evaluation of Eq. (4.13) we must determine which terms in the expansion
of this product contribute. Only two terms contribute: one where we choose
all the positive exponentials and one where we choose all the negative ones.
The contribution of the positive exponentials

∂w2 ∂2
w3

. . . ∂F−1
wF ∏

i<j
(wi − wj)ei ∑k ϕ(wk),

has only one term that survives when all wi are sent to zero, namely the
one where all the derivatives act on the polynomial part (more precisely, the
w0

1w1
2 . . . wF−1

F term in its expansion). The same reasoning applies to the neg-
ative exponentials and one is left with the particularly simple identification

: ψ(0)∂ψ(0) . . . ∂F−1ψ(0) :↔ (eiFϕ + e−iFϕ)(0). (4.26)

With this result, we can rewrite the wavefunction Eq. (4.24) in the following
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way using the ‘two group’ construction. To maintain charge neutrality we
put N−F

2 particles in group I and N+F
2 particles in group II. The resulting

expression is

Symm
I, II

[
∏
i,j∈I

(zi − zj)
2 ∏

i∈I
z

∆Nφ+F
i × ∏

k,l∈II
(zk − zl)

2 ∏
k∈II

z
∆Nφ−F
k

]
. (4.27)

One can interpret this result in a different way. Since the number of flux
quanta required to accomodate the Laughlin wave function is different be-
tween groups I and I I, the groups will have different excess flux. In spher-
ical geometry, assuming Nφ = N − 2 + ∆Nφ, the particles in group I have
∆N I

φ = ∆Nφ + F and those in group II have ∆N II
φ = ∆Nφ − F. We shall now

demonstrate that the number of excess flux quanta per group determines the
shape of the possible spin textures.

Textures with higher winding numbers In Section 4.2.2 we explained that
for iqH states the wave function for a skyrmion factorizes as [82, 77]

ΨSkyrmion = ΨB ×ΨiqH, (4.28)

where ΨiqH is the ground state wavefunction for filling ν = 1 and ΨB is a
wavefunction for spinful bosons in two orbitals [81]. Recall that (see Eq. (4.16))
in second quantization ΨB is given by

|0, ↑N〉+ λ| ↓, ↑N−1〉+ · · ·+ λN | ↓N , 0〉, (4.29)

where λ determines the size of the texture, and the construction is such that
in the limit λ → 0 one is left with the quasihole wave function. The general-
ization to the paired MR state allowed us to write down separate boson wave
functions (4.29) for both Laughlin factors in the two-group formulation of the
MR wave function. The two single particle angular momentum states in this
expression are due to one extra flux quantum being present. The skyrmion
resulting from this wave function has Pontryagin index (or winding number)
1; higher topological charge textures can be built by adding extra flux quanta
and repeating the procedure.

We have already alluded to what comes now in the discussion preceding
Eq. (4.23), where for an odd number of particles the simplest CST had winding
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numbers [2, 0]. For a texture with winding number w, one has to add w flux
quanta to the ground state. This opens up w + 1 orbitals for the bosons and
the superposition for a texture with winding number w is

|0, . . . , ↑N〉+ λ| ↓, . . . , ↑N−1〉+ · · ·+ λN | ↓N , . . . , 0〉. (4.30)

We assume that the textures appearing in both groups will maximize their
winding numbers separately, meaning that the particles will use all available
orbitals to arrive at wave function superpositions such as (4.30). This will
allow us to determine the number of unpaired fermions present in the system,
as we shall show now.

Fusion channel to spin texture locking Combining the results specified in
the above we arrive at the following claim: the composite CST with wind-
ing numbers [∆Nφ + F, ∆Nφ − F] that is associated with the fusion product
of 2∆Nφ elementary CSTs over the MR state necessarily carries F unpaired
fermions.

In general, the fusion channel label F satisfies (−1)F = (−1)N . Thus, the
simplest situation for N odd is F = 1 and ∆Nφ = 1, leading to a CST labeled
as [2, 0].

In Figures 4.6(a)–(c) we display the the spin textures for N = 8 particles in
the presence of ∆Nφ = 4 excess flux quanta. Possible sectors are F = 0 with
CST[4, 4], F = 2 with CST[6, 2] and F = 4 leading to CST[8, 0].
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(a) CST[4,4]

(b) CST[6,2]

(c) CST[8,0]

Figure 4.6: Stereographic projection of the (Sx, Sy) vector field (left) and the
length of the spin vector S2 (right) for spin textures CST[4,4], CST[6,2] and
CST[8,0]. All CSTs have λ1 = λ2 = 0.5 and N = 8. In the S2 plots, warmer
colors correspond to a longer length of the spin vector. The normalization is
such that S2 = 1 far away from the core of the CST.
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Spin texture readout In the fully polarized MR state the fingerprint left by
the unpaired fermions takes the form of an altered density profile [91] and
energy difference [95] with respect to the state without unpaired fermions.
We find that, within the framework we used here, the textures formed by
the electron spins are unique and in 1-1 correspondence with the number F
characterizing the fusion sector of the non-Abelian CST. This provides a novel
method to determine the number of unpaired fermions and thus to read out
the (F-number of the) topological quantum register.

In the present work, we have circumvented the task of minimizing the
realistic (Coulomb and Zeeman) interaction energies by working within the
zero energy subspace of the pairing Hamiltonian (4.11). The rationale for
this is the well-established fact that in the spin-polarized case the correlations
found in systems with realistic interactions agree with those enforced by the
pairing condition Hpairψ = 0. In addition, we have relied on the ‘two group’
Ansatz and have assumed that the particles in each group I, II separately
maximize their winding number.

It remains to be confirmed that our results capture the essence of what
happens when realistic (Coulomb and Zeeman) interactions are used instead
of the pairing condition. A numerical approach is possible in principle but
very challenging in practice. The spin degree of freedom makes the use of
exact diagonalization highly nontrivial due to the size of the Hilbert spaces
involved in the problem. A Monte Carlo study is hindered by the fact that
no simple first-quantized expressions have been found yet for the CST wave
functions.
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4.4 Summary

• We have constructed wave functions for Charged Spin Textures
(CSTs) over the Moore-Read (M-R) fractional quantum Hall state.
By using the “two-group" formalism for the M-R wave function,
they satisfy the pairing condition by construction.

• These CSTs are labeled by two winding numbers [wI , wI I ], one for
each group of particles. They generalize the skyrmions; a charge n
skyrmion equates to a [n, n] CST.

• The fundamental CST carrying winding numbers [1, 0] has the pe-
culiar property that all three components of the spin vector vanish
in its core. This is unique to the M-R state since it requires pairing
of spin- 1

2 electrons into a spin-1 vector field.

• The CST[1, 0] reduces to a half flux-quantum quasihole in the limit
where the size of the CST goes to zero. We therefore claim it carries
the same non-Abelian statistics.

• The composite CST that results from the fusion of multiple elemen-
tary CSTs has winding numbers that correlate to the number of un-
paired fermions in the system. Therefore this fusion process consti-
tutes a readout of the quantum register spanned by the fusion space
of the underlying non-Abelian particles.
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CHAPTER 5

Conclusions and outlook

Two separate directions of original research have been presented in this thesis.
We will first discuss these two subjects, after which we will propose directions
for future research.

Lattice model for DGTs The first part, contained in Chapter 3, concerns
a lattice model for a particular TQFT, a Discrete Gauge Theory. We have
introduced a set of multiparameter actions for these theories that display a rich
phase structure, and showed in particular that all the allowed condensates of
pure magnetic flux are realized in certain well anticipated regions of coupling
constant space. The set of open string operators that we defined form a set of
order parameters that allowed us to determine the content of the condensate
and to measure the topological symmetry breaking index q.

Once the condensate is identified, we have shown how to unambiguously
reconstruct the S-matrix of the low-energy theory in a broken or unbroken
phase by measurements of the complete set of braided loop operators, using
the anyonic loop operators we proposed in earlier work [35]. Due to an auxil-
iary gauge symmetry these operators are particularly well suited to detect the
nontrivial splittings of fields that correspond to fixed points under fusion with

121
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the condensate. We found that as expected the excitations that are confined
in a broken vacuum give rise to rows and columns of zeroes in the broken
S-matrix. Our work clearly demonstrates that the euclidean approach allows
for a very straightforward method to completely determine the nature of the
broken phase.

fqH CSTs In the second part of this thesis, presented in Chapter 4, we con-
struct wave functions for Charged Spin Textures (CSTs) over the Moore-Read
quantum Hall state. Inspired by an algebraic construction for skyrmions over
the integer quantum Hall state [81] and the colourful or two-component con-
struction for the M-R state [73] and encouraged by numerical studies [21] and
experiments [85] we found that it is possible to construct wave functions sat-
isfying the M-R clustering condition which carry a spin texture around the
elementary quasi hole.

These textures are a generalization of skyrmions: they carry a pair of wind-
ing numbers [wI , wI I ] instead of just one. We identified the topological charge
n skyrmion with an [n, n] CST and found that the elementary CST, with wind-
ing number [1, 0], has the peculiar property that the length of the spin vector
vanishes in the CST core. This is reminiscent of the polar core vortices [92]
appearing in spin-1 Bose-Einstein condensates, which in hindsight is not sur-
prising: the M-R state can be interpreted as a condensate of paired spin- 1

2
electrons in the spin-1 channel.

We also show that the pair of winding numbers is correlated to the number
of unpaired fermions arising in the fusion of multiple elementary CSTs. This
number is gives insight as to which path was taken in the Bratelli diagram of
the collection of σ fields that underlie the CSTs. Therefore determining the
winding numbers of a composite CST equates to (partially) reading out the
topologically protected quantum register spanned by the fusion space of those
σ particles.

Future research Let us start by pointing out some obvious directions for
future research directly connected to the work presented in this thesis. In our
research on DGTs we showed that the reason the modular S-matrix changes
in the broken phase is largely due to the contribution of the so-called vacuum
exchange diagram. In an upcoming more theoretical paper [34] we will extend
the approach used in this work, the use of observables and in particular the
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S-matrix to determine the phase structure of a TQFT to a far wider range of
theories, in particular the SU(N)k TQFT arising from Chern-Simons actions.

It would be interesting to study different models exhibiting different topo-
logical phases by somehow formulating them in the euclidean 3-dimensional
framework, to our knowledge such an approach is unfortunately not yet avail-
able for Chern Simons theories. One expects that for Levin Wen models [96]
our approach could be implemented though. Another path is to investigate
the phase structure after adding dynamical matter fields that transform non-
trivially. It is known that in such situations the Wilson type criteria break
down as the strings can break, this necessitates the development of different
diagnostic tools [43, 97].

Our work on CSTs in the M-R state still lacks a crucial component: the
relation between the wave functions we propose and the states resulting from
realistic Hamiltonians. Two different roads need to be travelled here. First of
all, it needs to be determined whether realistic interactions — Coulomb and
Zeeman — energetically favour the creation of an elementary CST with a finite
size λ over the presence of a polarized quasi hole in a certain part of the phase
diagram of the M-R state, which seems likely based on exact diagonalization
studies [21]. The most natural means of studying this problem would be
through a Monte Carlo simulation in which the energy is calculated for a given
trial wave function. Once this machinery is in place, it can also be used to
check whether the composite CSTs (having larger winding numbers) actually
maximize both their winding numbers, as is presupposed in the mechanism
for the read out of a quantum register we presented. A second check for
these CST wave functions would consist of a comparison between those that
we propose and those that follow from exact diagonalization [21] of realistic
interactions, which we believe is under way [98].

If we take a broader perspective, several other interesting venues of re-
search based on the work in this thesis come to mind. For example, it is
known that the NASS [89] state shares many characteristics with the M-R
state. More specifically, it is the wave function satisfying the same clustering
condition but carries total spin zero. It would therefore seem quite natural
that the two states are connected to each other by some sort of symmetry
breaking, perhaps of the sort discussed in Chapter 2.

On a different note, the proposal that the BF theory is a good field-theoretical
description of topological insulators (TIs) [99] in the same sense that Chern-
Simons (CS) theory captures the essential physics of the (fractional) quantum



124 CHAPTER 5. CONCLUSIONS AND OUTLOOK

Hall effect is promising. The topological symmetry breaking formalism used
in this thesis connects different TQFTs, such as DGTs and CS theories, by sym-
metry breaking through Bose condensation. It would be interesting to study
whether something of the sort can be achieved for these BF theories.

Finally, two recent articles [100, 101] discuss the emergence of fraction-
alized Majorana fermions on domain walls in a system consisting of two
fractional quantum Hall droplets of opposite spin coupled to superconduc-
tors and ferromagnets. Although these fractional Majoranas seem to obey a
parafermionic algebra [102], they are not universal for quantum computation.
This is in contrast to quantum Hall states based on parafermionic CFTs [103],
and it seems as though only a subset of the spectrum is realized in these
fractionalized Majorana proposals. Also it is unlikely that these fractional
Majoranas form a braided tensor category, as the spectra of TQFTs do. Per-
haps this can be understood within the framework of topological symmetry
breaking, where the algebra of fields on the T level is also not braided.
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